69。Farther,theairbeingvariouslyimpregnated,sometimesmoreandsometimesless,withvapoursandexhalationsfittedtoretundandintercepttheraysoflight,itfollowsthattheappearanceofthehorizontalmoonhathnotalwaysanequalfaintness,andbyconsequencethatluminary,thoughintheverysamesituation,isatonetimejudgedgreaterthanatanother。
70。Thatwehaveheregiventhetrueaccountofthephenomenaofthehorizontalmoonwill,Isuppose,befartherevidenttoanyonefromthefollowingconsiderations。First,itisplainthatwhichinthiscasesuggeststheideaofgreatermagnitudemustbesomethingwhichisitselfperceived;forthatwhichisunperceivedcannotsuggesttoourperceptionanyotherthing。Secondly,itmustbesomethingthatdoesnotconstantlyremainthesame,butissubjecttosomechangeorvariation,sincetheappearanceofthehorizontalmoonvaries,beingatonetimegreaterthanatanother。Andyet,thirdly,itcannotbethevisiblefigureormagnitude,sincethatremainsthesame,orisratherlesser,byhowmuchthemoonisnearertothehorizon。Itremainsthereforethatthetruecauseisthataffectionoralterationofthevisibleappearancewhichproceedsfromthegreaterpaucityofraysarrivingattheeye,andwhichItermfaintness:sincethisanswersalltheforementionedconditions,andIamnotconsciousofanyotherperceptionthatdoth。
71。Addtothisthatinmistyweatheritisacommonobservationthattheappearanceofthehorizontalmoonisfarlargerthanusual,whichgreatlyconspireswithandstrengthensouropinion。Neitherwoulditproveintheleastirreconcilablewithwhatwehavesaid,ifthehorizontalmoonshouldchancesometimestoseemenlargedbeyonditsusualextent,eveninmoresereneweather。Forwemustnotonlyhaveregardtothemistwhichhappenstobeintheplacewherewestand;weoughtalsototakeintoourthoughtsthewholesumofvapoursandexhalationswhichliebetwixttheeyeandthemoon:allwhichcooperatingtorendertheappearanceofthemoonmorefaint,andtherebyincreaseitsmagnitude,itmaychancetoappeargreaterthanitusuallydoes,eveninthehorizontalposition,atatimewhen,thoughtherebenoextraordinaryfogorhaziness,justintheplacewherewestand,yettheairbetweentheeyeandthemoon,takenalltogether,maybeloadedwithagreaterquantityofinterspersedvapoursandexhalationsthanatothertimes。
72。Itmaybeobjectedthatinconsequenceofourprinciplestheinterpositionofabodyinsomedegreeopaque,whichmayinterceptagreatpartoftheraysoflight,shouldrendertheappearanceofthemooninthemeridianaslargeaswhenitisviewedinthehorizon。TowhichIanswer,itisnotfaintnessanyhowappliedthatsuggestsgreatermagnitude,therebeingnonecessarybutonlyanexperimentalconnexionbetweenthosetwothings。
Itfollowsthatthefaintnesswhichenlargestheappearancemustbeappliedinsuchsort,andwithsuchcircumstances,ashavebeenobservedtoattendthevisionofgreatmagnitudes。Whenfromadistancewebeholdgreatobjects,theparticlesoftheintermediateairandvapours,whicharethemselvesunperceivable,dointerrupttheraysoflight,andtherebyrendertheappearancelessstrongandvivid:now,faintnessofappearancecausedinthissorthathbeenexperiencedtocoexistwithgreatmagnitude。Butwhenitiscausedbytheinterpositionofanopaquesensiblebody,thiscircumstancealtersthecase,sothatafaintappearancethiswaycauseddothnotsuggestgreatermagnitude,becauseithathnotbeenexperiencedtocoexistwithit。
73。Faintness,aswellasallotherideasorperceptionswhichsuggestmagnitudeordistance,dothitinthesamewaythatwordssuggestthenotionstowhichtheyareannexed。Now,itisknownawordpronouncedwithcertaincircumstances,orinacertaincontextwithotherwords,hathnotalwaysthesameimportandsignificationthatithathwhenpronouncedinsomeothercircumstancesordifferentcontextofwords。Theverysamevisibleappearanceastofaintnessandallotherrespects,ifplacedonhigh,shallnotsuggestthesamemagnitudethatitwouldifitwereseenatanequaldistanceonalevelwiththeeye。Thereasonwhereofisthatwearerarelyaccustomedtoviewobjectsatagreatheight;ourconcernslieamongthingssituatedratherbeforethanaboveus,andaccordinglyoureyesarenotplacedonthetopofourheads,butinsuchapositionasismostconvenientforustoseedistantobjectsstandinginourway。Andthissituationofthembeingacircumstancewhichusuallyattendsthevisionofdistantobjects,wemayfromhenceaccountfor(whatiscommonlyobserved)anobject’sappearingofdifferentmagnitude,evenwithrespecttoitshorizontalextension,onthetopofasteeple,forexample,anhundredfeethightoonestandingbelow,fromwhatitwouldifplacedatanhundredfeetdistanceonalevelwithhiseye。Forithathbeenshewnthatthejudgmentwemakeonthemagnitudeofathingdependsnotonthevisibleappearancealone,butalsoondiversothercircumstances,anyoneofwhichbeingomittedorvariedmaysufficetomakesomealterationinourjudgment。Hence,thecircumstancesofviewingadistantobjectinsuchasituationasisusual,andsuitswiththeordinarypostureoftheheadandeyesbeingomitted,andinsteadthereofadifferentsituationoftheobject,whichrequiresadifferentpostureoftheheadtakingplace,itisnottobewonderedatifthemagnitudebejudgeddifferent:
butitwillbedemandedwhyanhighobjectshouldconstantlyappearlessthananequidistantlowobjectofthesamedimensions,forsoitisobservedtobe:itmayindeedbegrantedthatthevariationofsomecircumstancesmayvarythejudgmentmadeonthemagnitudeofhighobjects,whichwearelessusedtolookat:butitdoesnothenceappearwhytheyshouldbejudgedlessratherthangreater?Ianswerthatincasethemagnitudeofdistantobjectswassuggestedbytheextentoftheirvisibleappearancealone,andthoughtproportionalthereto,itiscertaintheywouldthenbejudgedmuchlessthannowtheyseemtobe(videsect。79)·;Butseveralcircumstancesconcurringtoformthejudgmentwemakeonthemagnitudeofdistantobjects,bymeansofwhichtheyappearfarlargerthanothers,whosevisibleappearancehathanequalorevengreaterextension;itfollowsthatuponthechangeoromissionofanyofthosecircumstanceswhicharewonttoattendthevisionofdistantobjects,andsocometoinfluencethejudgmentsmadeontheirmagnitude,theyshallproportionablyappearlessthanotherwisetheywould。Foranyofthosethingsthatcausedanobjecttobethoughtgreaterthaninproportiontoitsvisibleextensionbeingeitheromittedorappliedwithouttheusualcircumstances,thejudgmentdependsmoreentirelyonthevisibleextension,andconsequentlytheobjectmustbejudgedless。Thusinthepresentcasethesituationofthethingseenbeingdifferentfromwhatitusuallyisinthoseobjectswehaveoccasiontoview,andwhosemagnitudeweobserve,itfollowsthattheverysameobject,beinganhundredfeethigh,shouldseemlessthanifitwasanhundredfeetoffon(ornearlyon)alevelwiththeeye。Whathasbeenheresetforthseemstometohavenosmallshareincontributingtomagnifytheappearanceofthehorizontalmoon,anddeservesnottobepassedoverintheexplicationofit。
74。Ifweattentivelyconsiderthephenomenonbeforeus,weshallfindthenotdiscerningbetweenthemediateandimmediateobjectsofsighttobethechiefcauseofthedifficultythatoccursintheexplicationofit。Themagnitudeofthevisiblemoon,orthatwhichistheproperandimmediateobjectofvision,isnotgreaterwhenthemoonisinthehorizonthanwhenitisinthemeridian。Howcomesit,therefore,toseemgreaterinonesituationthantheother?Whatisitcanputthischeatontheunderstanding?
Ithasnootherperceptionofthemoonthanwhatitgetsbysight:andthatwhichisseenisofthesameextent,Isay,thevisibleappearancehaththesame,orratheraless,magnitudewhenthemoonisviewedinthehorizontalthanwheninthemeridionalposition:andyetitisesteemedgreaterintheformerthaninthelatter。Hereinconsiststhedifficulty,whichdothvanishandadmitofamosteasysolution,ifweconsiderthatasthevisiblemoonisnotgreaterinthehorizonthaninthemeridian,soneitherisitthoughttobeso。Ithathbeenalreadyshewnthatinanyactofvisionthevisibleobjectabsolutely,orinitself,islittletakennoticeof,themindstillcarryingitsviewfromthattosometangibleideaswhichhavebeenobservedtobeconnectedwithit,andbythatmeanscometobesuggestedbyit。Sothatwhenathingissaidtoappeargreatorsmall,orwhateverestimatebemadeofthemagnitudeofanything,thisismeantnotofthevisiblebutofthetangibleobject。Thisdulyconsidered,itwillbenohardmattertoreconciletheseemingcontradictionthereis,thatthemoonshouldappearofadifferentbigness,thevisiblemagnitudethereofremainingstillthesame。Forbysect。56theverysamevisibleextension,withadifferentfaintness,shallsuggestadifferenttangibleextension。Whenthereforethehorizontalmoonissaidtoappeargreaterthanthemeridionalmoon,thismustbeunderstoodnotofagreatervisibleextension,butaofgreatertangibleorrealextension,whichbyreasonofthemorethanordinaryfaintnessofthevisibleappearance,issuggestedtothemindalongwithit。
75。Manyattemptshavebeenmadebylearnedmentoaccountforthisappearance。Gassendus,Descartes,Hobbes,andseveralothershaveemployedtheirthoughtsonthatsubject;buthowfruitlessandunsatisfactorytheirendeavourshavebeenissufficientlyshewninThePhilosophicalTransactions,[4]
whereyoumayseetheirseveralopinionsatlargesetforthandconfuted,notwithoutsomesurprizeatthegrossblundersthatingeniousmenhavebeenforcedintobyendeavouringtoreconcilethisappearancewiththeordinaryPrinciplesofoptics。SincethewritingofwhichtherehathbeenpublishedintheTransactions[5]anotherpaperrelatingtothesameaffairbythecelebratedDr。Wallis,whereinheattemptstoaccountforthatphenomenonwhich,thoughitseemsnottocontainanythingnewordifferentfromwhathadbeensaidbeforebyothers,Ishallneverthelessconsiderinthisplace。
76。Hisopinion,inshort,isthis;wejudgenotofthemagnitudeofanobjectbythevisualanglealone,butbythevisualangleinconjunctionwiththedistance。Hence,thoughtheangleremainthesame,orevenbecomeless,yetifwithalthedistanceseemtohavebeenincreased,theobjectshallappeargreater。Now,onewaywherebyweestimatethedistanceofanythingisbythenumberandextentoftheintermediateobjects:whenthereforethemoonisseeninthehorizon,thevarietyoffields,houses,etc。,togetherwiththelargeprospectofthewideextendedlandorseathatliesbetweentheeyeandtheutmostlimbofthehorizon,suggestuntothemindtheideaofgreaterdistance,andconsequentlymagnifytheappearance。
Andthis,accordingtoDr。Wallis,isthetrueaccountoftheextraordinarylargenessattributedbythemindtothehorizontalmoonatatimewhentheanglesubtendedbyitsdiameterisnotonejotgreaterthanitusedtobe。
77。Withreferencetothisopinion,nottorepeatwhathathbeenalreadysaidconcerningdistance,Ishallonlyobserve,first,thatiftheprospectofinterjacentobjectsbethatwhichsuggeststheideaoffartherdistance,andthisideaoffartherdistancebethecausethatbringsintothemindtheideaofgreatermagnitude,itshouldhencefollowthatifonelookedatthehorizontalmoonfrombehindawall,itwouldappearnobiggerthanordinary。Forinthatcasethewallinterposingcutsoffallthatprospectofseaandland,etc。whichmightotherwiseincreasetheapparentdistance,andtherebytheapparentmagnitudeofthemoon。Norwillitsufficetosaythememorydotheventhensuggestallthatextentofland,etc。,whichlieswithinthehorizon;whichsuggestionoccasionsasuddenjudgmentofsensethatthemoonisfartheroffandlargerthanusual。Foraskanymanwho,fromsuchastationbeholdingthehorizontalmoon,shallthinkhergreaterthanusual,whetherhehathatthattimeinhismindanyideaoftheintermediateobjects,orlongtractoflandthatliesbetweenhiseyeandtheextremeedgeofthehorizon?Andwhetheritbethatideawhichisthecauseofhismakingtheaforementionedjudgment?
Hewill,Isuppose,replyinthenegative,anddeclarethehorizontalmoonshallappeargreaterthanthemeridional,thoughheneverthinksofalloranyofthosethingsthatliebetweenhimandit。Secondly,itseemsimpossiblebythishypothesistoaccountforthemoon’sappearingintheverysamesituationatonetimegreaterthanatanother;whichneverthelesshasbeenshewntobeveryagreeabletotheprincipleswehavelaiddown,andreceivesamosteasyandnaturalexplicationfromthem。Forthefurtherclearing’upofthispointitistobeobservedthatwhatweimmediatelyandproperlyseeareonlylightsandcoloursinsundrysituationsandshadesanddegreesoffaintnessandclearness,confusionanddistinctness。Allwhichvisibleobjectsareonlyinthemind,nordotheysuggestoughtexternal,whetherdistanceormagnitude,otherwisethanbyhabitualconnexionaswordsdothings。Wearealsotoremarkthat,besidethestrainingoftheeyes,andbesidethevividandfaint,thedistinctandconfusedappearances(which,bearingsomeproportiontolinesandangles,havebeensubstitutedinsteadofthemintheforegoingpartofthistreatise),thereareothermeanswhichsuggestbothdistanceandmagnitude;particularlythesituationofvisiblepointsofobjects,asupperorlower;theonesuggestingafartherdistanceandgreatermagnitude,theotheranearerdistanceandlessermagnitude:allwhichisaneffectonlyofcustomandexperience;therebeingreallynothingintermediateinthelineofdistancebetweentheuppermostandlowermost,whicharebothequidistant,orratheratnodistancefromtheeye,asthereisalsonothinginupperorlower,whichbynecessaryconnexionshouldsuggestgreaterorlessermagnitude。Now,asthesecustomary,experimentalmeansofsuggestingdistancedolikewisesuggestmagnitude,sotheysuggesttheoneasimmediatelyastheother。Isaytheydonot(videsect。53)firstsuggestdistance,andthenleavethemindfromthencetoinferorcomputemagnitude,jutsuggestmagnitudeasimmediatelyanddirectlyastheysuggestdistance。
78。Thisphenomenonofthehorizontalmoonisaclearinstanceoftheinsufficiencyoflinesandanglesforexplainingthewaywhereinthemindperceivesandestimatesthemagnitudeofoutwardobjects。Thereisneverthelessauseofcomputationbytheminordertodeterminetheapparentmagnitudeofthings,sofarastheyhaveaconnexionwith,andareproportionalto,thoseotherideasorperceptionswhicharethetrueandimmediateoccasionsthatsuggesttothemindtheapparentmagnitudeofthings。Butthisingeneralmay,Ithink,beobservedconcerningmathematicalcomputationinoptics:thatitcanneverbeverypreciseandexactsincethejudgmentswemakeofthemagnitudeofexternalthingsdooftendependonseveralcircumstances,whicharenotproportionableto,orcapableofbeingdefinedby,linesandangles。
79。Fromwhathasbeensaidwemaysafelydeducethisconsequence;towit,thatamanbornblindandmadetoseewould,atfirstopeningofhiseyes,makeaverydifferentjudgmentofthemagnitudeofobjectsintromittedbythemfromwhatothersdo。Hewouldnotconsidertheideasofsightwithreferenceto,orashavinganyconnexionwith,theideasoftouch:hisviewofthembeingentirelyterminatedwithinthemselves,hecannootherwisejudgethemgreatorsmallthanastheycontainagreaterorlessernumberofvisiblepoints。Now,itbeingcertainthatanyvisiblepointcancoverorexcludefromviewonlyoneothervisiblepoint,itfollowsthatwhateverobjectinterceptstheviewofanotherhathanequalnumberofvisiblepointswithit;andconsequentlytheyshallbothbethoughtbyhimtohavethesamemagnitude。Henceitisevidentoneinthosecircumstanceswouldjudgehisthumb,withwhichhemighthideatowerorhinderitsbeingseen,equaltothattower,orhishand,theinterpositionwhereofmightconcealexperimentalmeansthefirmamentfromhisview,equaltothefirmament:howgreataninequalitysoevertheremayinourapprehensionsseemtobebetwixtthosetwothings,becauseofthecustomaryandcloseconnexionthathasgrownupinourmindsbetweentheobjectsofsightandtouch;wherebytheverydifferentanddistinctideasofthosetwosensesaresoblendedandconfoundedtogetherastobemistakenforoneandthesamething;outofwhichprejudicewecannoteasilyextricateourselves。
80。Forthebetterexplainingthenatureofvision,andsettingthemannerwhereinweperceivemagnitudesinaduelight,Ishallproceedtomakesomeobservationsconcerningmattersrelatingthereto,whereofthewantofreflexion,anddulyseparatingbetweentangibleandvisibleideas,isapttocreateinusmistakenandconfusednotions。Andfirst,Ishallobserve·;thattheminimumvisibileisexactlyequalinallbeingswhatsoeverthatareendowedwiththevisivefaculty。
Noexquisiteformationoftheeye,nopeculiarsharpnessofsight,canmakeitlessinonecreaturethaninanother;foritnotbeingdistinguishableintoparts,norinanywiseaconsistingofthem,itmustnecessarilybethesametoall。Forsupposeitotherwise,andthattheminimumvisibileofamite,forinstance,belessthantheminimumvisibileofaman:thelatterthereforemaybydetractionofsomepartbemadeequaltotheformer:itdoththereforeconsistofparts,whichisinconsistentwiththenotionofaminimumvisibileorpoint。
81。Itwillperhapsbeobjectedthattheminimumvisibileofamandothreallyandinitselfcontainpartswherebyitsurpassesthatofamite,thoughtheyarenotperceivablebytheman。TowhichIanswer,theminimumvisibilehaving(inlikemannerasallothertheproperandimmediateobjectsofsight)beenshewnnottohaveanyexistencewithoutthemindofhimwhoseesit,itfollowstherecannotbeanypanofitthatisnotactuallyperceived,andthereforevisible。Nowforanyobjecttocontaindistinctvisibleparts,andatthesametimetobeaminimumvisibile,isamanifestcontradiction。
82。Ofthesevisiblepointsweseeatalltimesanequalnumber。Itiseverywhitasgreatwhenourviewiscontractedandboundedbynearobjectsaswhenitisextendedtolargerandremoter。Foritbeingimpossiblethatoneminimumvisibileshouldobscureorkeepoutofsightmotethanoneother,itisaplainconsequencethatwhenmyviewisonallsidesboundedbythewallsofmystudyseejustasmanyvisiblepointsasIcould,incasethatbytheremovalofthestudy—wallsandallotherobstructions,Ihadafullprospectofthecircumjacentfields,mountains,sea,andopenfirmament:forsolongasIamshutupwithinthewalls,bytheirinterpositioneverypointoftheexternalobjectsiscoveredfrommyview:buteachpointthatisseenbeingabletocoverorexcludefromsightoneonlyothercorrespondingpoint,itfollowsthatwhilstmysightisconfinedtothosenarrowwallsIseeasmanypoints,orminimavisibilia,asIshouldwerethosewallsaway,bylookingonalltheexternalobjectswhoseprospectisinterceptedbythem。Wheneverthereforewearesaidtohaveagreaterprospectatonetimethananother,thismustbeunderstoodwithrelation,nottotheproperandimmediate,butthesecondaryandmediateobjectsofvision,which,ashathbeenshewn,properlybelongtothetouch。
83。Thevisivefacultyconsideredwithreferencetoitsimmediateobjectsmaybefoundtolabouroftwodefects。First,inrespectoftheextentornumberofvisiblepointsthatareatonceperceivablebyit,whichisnarrowandlimitedtoacertaindegree。Itcantakeinatoneviewbutacertaindeterminatenumberofminimavisibilia,beyondwhichitcannotextenditsprospect。Secondly,oursightisdefectiveinthatitsviewisnotonlynarrow,butalsoforthemostpartconfused:
ofthosethingsthatwetakeinatoneprospectwecanseebutafewatonceclearlyandunconfusedly:andthemorewefixoursightonanyoneobject,bysomuchthedarkerandmoreindistinctshalltherestappear。
84。Correspondingtothesetwodefectsofsight,wemayimagineasmanyperfections,towit,1st,thatofcomprehendinginoneviewagreaternumberofvisiblepoints。2dly,ofbeingabletoviewthemallequallyandatoncewiththeutmostclearnessanddistinction。Thatthoseperfectionsarenotactuallyinsomeintelligencesofadifferentorderandcapacityfromoursitisimpossibleforustoknow。
85。Inneitherofthosetwowaysdomicroscopescontributetotheimprovementofsight;forwhenwelookthroughamicroscopeweneitherseemorevisiblepoints,norarethecollateralpointsmoredistinctthanwhenwelookwiththenakedeyeatobjectsplacedinaduedistance。Amicroscopebringsus,asitwere,intoanewworld:itpresentsuswithanewsceneofvisibleobjectsquitedifferentfromwhatwebeholdwiththenakedeye。Buthereinconsiststhemostremarkabledifference,towit,thatwhereastheobjectsperceivedbytheeyealonehaveacertainconnexionwithtangibleobjects,wherebywearetaughttoforeseewhatwillensueupontheapproachorapplicationofdistantobjectstothepartsofourownbody,whichmuchconducethtoitspreservation,thereisnotthelikeconnexionbetweenthingstangibleandthosevisibleobjectsthatareperceivedbyhelpofafinemicroscope。
86。Henceitisevidentthatwereoureyesturnedintothenatureofmicroscopes,weshouldnotbemuchbenefitedbythechange;weshouldbedeprivedoftheforementionedadvantageweatpresentreceivebythevisivefaculty,andhaveleftusonlytheemptyamusementofseeing,withoutanyotherbenefitarisingfromit。Butinthatcase,itwillperhapsbesaid,oursightwouldbeenduedwithafargreatersharpnessandpenetrationthanitnowhath。Butitiscertainfromwhatwehavealreadyshewnthattheminimumvisibileisnevergreaterorlesser,butinallcasesconstantlythesame:andinthecaseofmicroscopicaleyesIseeonlythisdifference,towit,thatupontheceasingofacertainobservableconnexionbetwixtthediversperceptionsofsightandtouch,whichbeforeenabledustoregulateouractionsbytheeye,itwouldnowberenderedutterlyunserviceabletothatpurpose。
87。Uponthewholeitseemsthatifweconsidertheuseandendofsight,togetherwiththepresentstateandcircumstancesofourbeing,weshallnotfindanygreatcausetocomplainofanydefectorimperfectioninit,oreasilyconceivehowitcouldbemended。Withsuchadmirablewisdomisthatfacultycontrived,bothforthepleasureandconvenienceoflife。
88。HavingfinishedwhatIintendedtosayconcerningthedistanceandmagnitudeofobjects,Icomenowtotreatofthemannerwhereinthemindperceivesbysighttheirsituation。Amongthediscoveriesofthelastage,itisreputednoneoftheleastthatthemannerofvisionhathbeenmoreclearlyexplainedthaneverithadbeenbefore。Thereisatthisdaynooneignorantthatthepicturesofexternalobjectsarepaintedontheretina,orfundoftheeye:thatwecanseenothingwhichisnotsopainted:andthat,accordingasthepictureismoredistinctorconfused,soalsoistheperceptionwehaveoftheobject:buttheninthisexplicationofvisionthereoccursonemightydifficulty。Theobjectsarepaintedinaninvertedorderonthebottomoftheeye:theupperpartofanyobjectbeingpaintedonthelowerpartoftheeye,andthelowerpartoftheobjectontheupperpartoftheeye:andsoalsoastorightandleft。Sincethereforethepicturesarethusinverted,itisdemandedhowitcomestopassthatweseetheobjectserectandintheirnaturalposture?
89。Inanswertothisdifficultywearetoldthatthemind,perceivinganimpulseofarayoflightontheupperpartoftheeye,considersthisrayascominginadirectlinefromthelowerpartoftheobject;andinlikemannertracingtheraythatstrikesonthelowerpartoftheeye,itisdirectedtotheupperpartoftheobject。Thusintheadjacentfigure,C,thelowerpointoftheobjectABC,isprojectedonctheupperpartoftheeye。SolikewisethehighestpointAisprojectedonathelowestpartoftheeye,whichmakestherepresentationcbainverted:
butthemindconsideringthestrokethatismadeoncascominginthestraightlineCcfromthelowerendoftheobject;andthestrokeorimpulseonaascominginthelineAafromtheupperendoftheobject,isdirectedtomakearightjudgmentofthesituationoftheobjectABC,notwithstandingthepictureofitisinverted。Thisisillustratedbyconceivingablindmanwho,holdinginhishandstwosticksthatcrosseachother,dothwiththemtouchtheextremitiesofanobject,placedinaperpendicularsituation。Itiscertainthismanwilljudgethattobetheupperpartoftheobjectwhichhetoucheswiththestickheldintheundermosthand,andthattobethelowerpartoftheobjectwhichhetoucheswiththestickinhisuppermosthand。Thisisthecommonexplicationoftheerectappearanceofobjects,whichisgenerallyreceivedandacquiescedin,being(asMr。Molyneuxtellsus[6])’allowedbyallmenassatisfactory’。
90。Butthisaccounttomedoesnotseeminanydegreetrue。DidIperceivethoseimpulses,decussations,anddirectionsoftheraysoflightinlikemannerashathbeensetforth,thenindeeditwouldnotbealtogethervoidofprobability。Andtheremightbesomepretenceforthecomparisonoftheblindmanandhiscrosssticks。Butthecaseisfarotherwise。IknowverywellthatIperceivenosuchthing。AndofconsequenceIcannottherebymakeanestimateofthesituationofobjects。Iappealtoanyone’sexperience,whetherhebeconscioustohimselfthathethinksontheintersectionmadebytheradious[sic]pencils,orpursuestheimpulsestheygiveinrightlines,wheneverheperceivesbysightthepositionofanyobject?
Tomeitseemsevidentthatcrossingandtracingoftheraysisneverthoughtonbychildren,idiots,orintruthbyanyother,saveonlythosewhohaveappliedthemselvestothestudyofoptics。Andforthemindtojudgeofthesituationofobjectsbythosethingswithoutperceivingthem,ortoperceivethemwithoutknowingit,isequallybeyondmycomprehension。Addtothisthattheexplainingthemannerofvisionbytheexampleofcrosssticksandhuntingfortheobjectalongtheaxesoftheradiouspencils,dothsupposetheproperobjectsofsighttobeperceivedatadistancefromus,contrarytowhathathbeendemonstrated。
91。Itremains,therefore,thatwelookforsomeotherexplicationofthisdifficulty:andIbelieveitnotimpossibletofindone,providedweexamineittothebottom,andcarefullydistinguishbetweentheideasofsightandtouch;whichcannotbetoooftinculcatedintreatingofvision:
butmoreespeciallythroughouttheconsiderationofthisaffairweoughttocarrythatdistinctioninourthoughts:forthatfromwantofarightunderstandingthereofthedifficultyofexplainingerectvisionseemschieflytoarise。
92。Inordertodisentangleourmindsfromwhateverprejudiceswemayentertainwithrelationtothesubjectinhand,nothingseemsmoreappositethanthetakingintoourthoughtsthecaseofonebornblind,andafterwards,whengrownup,madetosee。Andthough,perhaps,itmaynotbeaneasytasktodivestourselvesentirelyoftheexperiencereceivedfromsight,soastobeabletoputourthoughtsexactlyinthepostureofsuchaone’s,wemust,nevertheless,asfaraspossible,endeavourtoframetrueconceptionsofwhatmightreasonablybesupposedtopassinhismind。
93。Itiscertainthatamanactuallyblind,andwhohadcontinuedsofromhisbirth,wouldbythesenseoffeelingattaintohaveideasofupperandlower。BythemotionofhishandhemightdiscernthesituationofanytangibleobjectplacedwithinhisFIreach。Thatpartonwhichhefelthimselfsupported,ortowardswhichheperceivedhisbodytogravitate,hewouldtermlower,andthecontrarytothisupper;andaccordinglydenominatewhatsoeverobjectshetouched。
94。Butthen,whateverjudgmentshemakesconcerningthesituationofobjectsareconfinedtothoseonlythatareperceivablebytouch。Allthosethingsthatareintangibleandofaspiritualnature,histhoughtsanddesires,hispassions,andingeneralallthemodificationsofthesoul,tothesehewouldneverapplythetermsupperandlower,exceptonlyinametaphoricalsense。Hemay,perhaps,bywayofallusion,speakofhighorlowthoughts:butthosetermsintheirpropersignificationwouldneverbeappliedtoanythingthatwasnotconceivedtoexistwithoutthemind。Foramanbornblind,andremaininginthesamestate,couldmeannothingelsebythewordshigherandlowerthanagreaterorlesserdistancefromtheearth;whichdistancehewouldmeasurebythemotionorapplicationofhishandorsomeotherpartofhisbody。Itisthereforeevidentthatallthosethingswhich,inrespectofeachother,wouldbyhimbethoughthigherorlower,mustbesuchaswereconceivedtoexistwithouthismind,intheambientspace。
95。Whenceitplainlyfollowsthatsuchaone,ifwesupposehimmadetosee,wouldnotatfirstsightthinkanythinghesawwashighorlow,erectorinverted;forithathbeenalreadydemonstratedinsect。41thathewouldnotthinkthethingsheperceivedbysighttobeatanydistancefromhim,orwithouthismind。Theobjectstowhichhehadhithertobeenusedtoapplythetermsupanddown,highandlow,weresuchonlyasaffectedorweresomewayperceivedbyhiscouch:buttheproperobjectsofvisionmakeanewsetofideas,perfectlydistinctanddifferentfromtheformer,andwhichcaninnosortmakethemselvesperceivedbytouch。Thereis,therefore,nothingatallthatcouldinducehimtothinkthosetermsapplicabletothem:norwouldheeverthinkittillsuchtimeashehadobservedtheirconnexionwithtangibleobjects,andthesameprejudicebegantoinsinuateitselfintohisunderstanding,whichfromtheirinfancyhadgrownupintheunderstandingsofothermen。
96。TosetthismatterinaclearerlightIshallmakeuseofanexample。
Supposetheabove—mentionedblindpersonbyhistouchperceivesamantostanderect。Letusinquireintothemannerofthis。Bytheapplicationofhishandtotheseveralpartsofahumanbodyhehadperceiveddifferenttangibleideas,whichbeingcollectedintosundrycomplexones,havedistinctnamesannexedtothem。Thusonecombinationofacertaintangiblefigure,bulk,andconsistencyofpartsiscalledthehead,anotherthehand,athirdthefoot,andsooftherest:allwhichcomplexideascould,inhisunderstanding,bemadeuponlyofideasperceivablebytouch。Hehadalsobyhistouchobtainedanideaofearthorground,towardswhichheperceivesthepartsofhisbodytohaveanaturaltendency。Now,byerectnothingmorebeingmeantthanthatperpendicularpositionofamanwhereinhisfeetarenearesttotheearth,iftheblindpersonbymovinghishandoverthepartsofthemanwhostandsbeforehimperceivesthetangibleideasthatcomposetheheadtobefarthestfrom,andthosethatcomposethefeettobenearestto,thatothercombinationoftangibleideaswhichhecallsearth,hewilldenominatethatmanerect。Butifwesupposehimonasuddentoreceivehissight,andthathebeholdamanstandingbeforehim,itisevidentinthatcasehewouldneitherjudgethemanheseestobeerectnorinverted;forheneverhavingknownthosetermsappliedtoanyothersavetangiblethings,orwhichexistedinthespacewithouthim,andwhatheseesneitherbeingtangiblenorperceivedasexistingwithout,hecouldnotknowthatinproprietyoflanguagetheywereapplicabletoit。
97。Afterwards,whenuponturninghisheadoreyesupanddowntotherightandleftheshallobservethevisibleobjectstochange,andshallalsoattaintoknowthattheyarecalledbythesamenames,andconnectedwiththeobjectsperceivedbytouch;thenindeedhewillcometospeakofthemandtheirsituation,inthesametermsthathehasbeenusedtoapplytotangiblethings;andthosethatheperceivesbyturninguphiseyeshewillcallupper,andthosethatbyturningdownhiseyeshewillcalllower。
98。Andthisseemstomethetruereasonwhyheshouldthinkthoseobjectsuppermostthatarepaintedonthelowerpartofhiseye:forbyturningtheeyeuptheyshallbedistinctlyseen;aslikewisethosethatarepaintedonthehighestpartoftheeyeshallbedistinctlyseenbyturningtheeyedown,andareforthatreasonesteemedlowest;forwehaveshewnthattotheimmediateobjectsofsightconsideredinthemselves,hewouldnotattributethetermshighandlow。Itmustthereforebeonaccountofsomecircumstanceswhichareobservedtoattendthem:andthese,itisplain,aretheactionsofturningtheeyeupanddown,whichsuggestaveryobviousreasonwhythemindshoulddenominatetheobjectsofsightaccordinglyhighorlow。Andwithoutthismotionoftheeye,thisturningitupanddowninordertodiscerndifferentobjects,doubtlesserect,inverse,andothertheliketermsrelatingtothepositionoftangibleobjects,wouldneverhavebeentransferred,orinanydegreeapprehendedtobelongtotheideasofsight:themereactofseeingincludingnothinginittothatpurpose;whereasthedifferentsituationsoftheeyenaturallydirectthemindtomakeasuitablejudgmentofthesituationofobjectsintromittedbyit。
99。Farther,whenhehasbyexperiencelearnedtheconnexionthereisbetweentheseveralideasofsightandtouch,hewillbeable,bytheperceptionhehasofthesituationofvisiblethingsinrespectofoneanother,tomakeasuddenandtrueestimateofthesituationofoutward,tangiblethingscorrespondingtothem。Andthusitisheshallperceivebysightthesituationofexternalobjectswhichdonotproperlyfallunderthatsense。
100。Iknowweareverypronetothinkthat,ifjustmadetosee,weshouldjudgeofthesituationofvisiblethingsaswedonow:butwearealsoaspronetothinkthat,atfirstsight,weshouldinthesamewayapprehendthedistanceandmagnitudeofobjectsaswedonow:whichhathbeenshewntobeafalseandgroundlesspersuasion。Andforthelikereasonsthesamecensuremaybepassedonthepositiveassurancethatmostmen,beforetheyhavethoughtsufficientlyofthematter,mighthaveoftheirbeingabletodeterminebytheeyeatfirstview,whetherobjectswereerectorinverse。
l01。Itwill,perhaps,beobjectedcoouropinionthataman,forinstance,beingthoughterectwhenhisfeetarenexttheearth,andinvertedwhenhisheadisnexttheearth,itdothhencefollowthatbythemereactofvision,withoutanyexperienceoralteringthesituationoftheeye,weshouldhavedeterminedwhetherhewereerectorinverted:forboththeearthitself,andthelimbsofthemanwhostandsthereon,beingequallyperceivedbysight,onecannotchooseseeingwhatpartofthemanisnearesttheearth,andwhatpartfarthestfromit,i。e。whetherhebeerectorinverted。
I02。TowhichIanswer,theideaswhichconstitutethetangibleearthandmanareentirelydifferentfromthosewhichconstitutethevisibleearthandman。Norwasitpossible,byvirtueofthevisivefacultyalone,withoutsuperaddinganyexperienceoftouch,oralteringthepositionoftheeye,evertohaveknown,orsomuchassuspected,therehadbeenanyrelationorconnexionbetweenthem。Henceamanatfirstviewwouldnotdenominateanythinghesawearth,orhead,orfoot;andconsequentlyhecouldnottellbythemereactofvisionwhethertheheadorfeetwerenearesttheearth:nor,indeed,wouldwehavetherebyanythoughtofearthorman,erectorinverse,atall:whichwillbemadeyetmoreevidentifwenicelyobserve,andmakeaparticularcomparisonbetween,theideasofbothsenses。
103。ThatwhichIseeisonlyvarietyoflightandcolours。ThatwhichIfeelishardorsoft,hotorcold,roughorsmooth。Whatsimilitude,whatconnexionhavethoseideaswiththese?Orhowisitpossiblethatanyoneshouldseereasontogiveoneandthesamenametocombinationsofideassoverydifferentbeforehehadexperiencedtheircoexistence?
Wedonotfindthereisanynecessaryconnexionbetwixtthisorthattangiblequalityandanycolourwhatsoever。Andwemaysometimesperceivecolourswherethereisnothingtobefelt。Allwhichdothmakeitmanifestthatnoman,atfirstreceivingofhissight,wouldknowtherewasanyagreementbetweenthisorthatparticularobjectofhissightandanyobjectoftouchhehadbeenalreadyacquaintedwith:thecolours,therefore,oftheheadwouldtohimnomoresuggesttheideaofheadthantheywouldtheideaoffoot。
104。Farther,wehaveatlargeshewn(vid。sect。63and64)thereisnodiscoverablenecessaryconnexionbetweenanygivenvisiblemagnitudeandanyoneparticulartangiblemagnitude;butthatitisentirelytheresultofcustomandexperience,anddependsonforeignandaccidentalcircumstancesthatwecanbytheperceptionofvisibleextensioninformourselveswhatmaybetheextensionofanytangibleobjectconnectedwithit。Henceitiscertainthatneitherthevisiblemagnitudeofheadorfootwouldbringalongwiththemintothemind,atfirstopeningoftheeyes,therespectivetangiblemagnitudesofthoseparts。
105。Bytheforegoingsectionitisplainthevisiblefigureofanypartofthebodyhathnonecessaryconnexionwiththetangiblefigurethereof,soasatfirstsighttosuggestittothemind。Forfigureistheterminationofmagnitude;whenceitfollowsthatnovisiblemagnitudehavinginitsownnatureanaptnesstosuggestanyoneparticulartangiblemagnitude,soneithercananyvisiblefigurebeinseparablyconnectedwithitscorrespondingtangiblefigure:soasofitselfandinawaypriortoexperience,itmightsuggestittotheunderstanding。Thiswillbefartherevidentifweconsiderthatwhatseemssmoothandroundtothetouchmaytosight,ifviewedthroughamicroscope,seemquiteotherwise。
106。Fromallwhichlaidtogetheranddulyconsidered,wemayclearlydeducethisinference。Inthefirstactofvisionnoideaenteringbytheeyewouldhaveaperceivableconnexionwiththeideastowhichthenamesearth,man,head,foot,etc。,wereannexedintheunderstandingofapersonblindfromhisbirth;soasinanysorttointroducethemintohismind,ormakethemselvesbecalledbythesamenames,andreputedthesamethingswiththem,asafterwardstheycometobe。
107。Theredoth,nevertheless,remainonedifficulty,whichperhapsmayseemtopresshardonouropinion,anddeservenottobepassedover:
forthoughitbegrantedthatneitherthecolour,size,norfigureofthevisiblefeethaveanynecessaryconnexionwiththeideasthatcomposethetangiblefeet,soastobringthematfirstsightintomymind,ormakemeindangerofconfoundingthembeforeIhadbeenusedto,andforsometimeexperiencedtheirconnexion:yetthusmuchseemsundeniable,namely,thatthenumberofthevisiblefeetbeingthesamewiththatofthetangiblefeet,Imayfromhencewithoutanyexperienceofsightreasonablyconcludethattheyrepresentorareconnectedwiththefeetratherthanthehead。
Isay,itseemstheideaoftwovisiblefeetwillsoonersuggesttothemindtheideaoftwotangiblefeetthanofonehead;sothattheblindmanuponfirstreceptionofthevisivefacultymightknowwhichwerethefeetortwo,andwhichtheheadorone。
108。Inordertogetclearofthisseemingdifficultyweneedonlyobservethatdiversityofvisibleobjectsdothnotnecessarilyinferdiversityoftangibleobjectscorrespondingtothem。Apicturepaintedwithgreatvarietyofcoloursaffectsthetouchinoneuniformmanner;itisthereforeevidentthatIdonotbyanynecessaryconsecution,independentofexperience,judgeofthenumberofthingstangiblefromthenumberofthingsvisible。
Ishouldnot,therefore,atfirstopeningmyeyesconcludethatbecauseIseetwoIshallfeeltwo。How,therefore,canI,beforeexperienceteachesme,knowthatthevisiblelegs,becausetwo,areconnectedwiththetangiblelegs,orthevisiblehead,becauseone,isconnectedwiththetangiblehead?Thetruthis,thethingsIseearesoverydifferentandheterogeneousfromthethingsIfeelthattheperceptionoftheonewouldneverhavesuggestedtheothertomythoughts,orenabledmetopasstheleastjudgmentthereon,untilIhadexperiencedtheirconnexion。
109。Butforafullerillustrationofthismatteritoughttobeconsideredthatnumber(howeversomemayreckonitamongsttheprimaryqualities)
isnothingfixedandsettled,reallyexistinginthingsthemselves。Itisentirelythecreatureofthemind,consideringeitheranideabyitself,oranycombinationofideastowhichitgivesonename,andsomakesitpassforanunit。Accordingasthemindvariouslycombinesitsideastheunitvaries:andastheunit,sothenumber,whichisonlyacollectionofunits,dothalsovary。Wecallawindowone,achimneyone,andyetahouseinwhichtherearemanywindowsandmanychimneyshathanequalrighttobecalledone,andmanyhousesgotothemakingofthecity。Intheseandthelike,instancesitisevidenttheunitconstantlyrelatestotheparticulardraughtsthemindmakesofitsideas,towhichitaffixesnames,andwhereinitincludesmoreorlessasbestsuitsitsownendsandpurposes。Whatever,therefore,themindconsidersasone,thatisanunit。Everycombinationofideasisconsideredasonethingbythemind,andintokenthereofismarkedbyonename。Now,thisnamingandcombiningtogetherofideasisperfectlyarbitrary,anddonebythemindinsuchsortasexperienceshewsittobemostconvenient:withoutwhichourideashadneverbeencollectedintosuchsundrydistinctcombinationsastheynoware。
110。Henceitfollowsthatamanbornblindandafterwards,whengrownup,madetosee,wouldnotinthefirstactofvisionparcelouttheideasofsightintothesamedistinctcollectionsthatothersdo,whohaveexperiencedwhichdoregularlycoexistandarepropertobebundleduptogetherunderonename。Hewouldnot,forexample,makeintoonecomplexidea,andtherebyesteemanunit,allthoseparticularideaswhichconstitutethevisibleheadorfoot。Fortherecanbenoreasonassignedwhyheshoulddoso,barelyuponhisseeingamanstanduprightbeforehim。Therecrowdintohismindtheideaswhichcomposethevisibleman,incompanywithalltheotherideasofsightperceivedatthesametime:butalltheseideasofferedatoncetohisview,hewouldnotdistributeintosundrydistinctcombinationstillsuchtimeasbyobservingthemotionofthepartsofthemanandotherexperienceshecomestoknowwhicharetobeseparatedandwhichtobecollectedtogether。
111。Fromwhathathbeenpremiseditisplaintheobjectsofsightandtouchmake,ifImaysosay,twosetsofideaswhicharewidelydifferentfromeachother。Toobjectsofeitherkindweindifferentlyattributethetermshighandlow,rightandleft,andsuchlike,denotingthepositionorsituationofthings:butthenwemustwellobservethatthepositionofanyobjectisdeterminedwithrespectonlytoobjectsofthesamesense。
Wesayanyobjectoftouchishighorlow,accordingasitismoreorlessdistantfromthetangibleearth:andinlikemannerwedenominateanyobjectofsighthighorlowinproportionasitismoreorlessdistantfromthevisibleearth:buttodefinethesituationofvisiblethingswithrelationtothedistancetheybearfromanytangiblething,orviceversa,thiswereabsurdandperfectlyunintelligible。Forallvisiblethingsareequallyinthemind,andtakeupnopartoftheexternalspace:andconsequentlyareequidistantfromanytangiblethingwhichexistswithoutthemind。
112。Orrather,tospeaktruly,theproperobjectsofsightareatnodistance,neithernearnorfar,fromanytangiblething。Forifweinquirenarrowlyintothematterweshallfindthatthosethingsonlyarecomparedtogetherinrespectofdistancewhichexistafterthesamemanner,orappertainuntothesamesense。Forbythedistancebetweenanytwopointsnothingmoreismeantthanthenumberofintermediatepoints:ifthegivenpointsarevisiblethedistancebetweenthemismarkedoutbythenumberoftheinterjacentvisiblepoints:iftheyaretangible,thedistancebetweenthemisalineconsistingoftangiblepoints;butiftheyareonetangibleandtheothervisible,thedistancebetweenthemdothneitherconsistofpointsperceivablebysightnorbytouch,i。e。itisutterlyinconceivable。
This,perhaps,willnotfindaneasyadmissionintoallmen’sunderstanding:
however,Ishouldgladlybeinformedwhetheritbenottruebyanyonewhowillbeatthepainstoreflectalittleandapplyithometohisthoughts。
113。Thenotobservingwhathasbeendeliveredinthetwolastsectionsseemstohaveoccasionednosmallpartofthedifficultythatoccursinthebusinessoferectappearances。Thehead,whichispaintednearesttheearth,seemstobefarthestfromit:andontheotherhandthefeet,whicharepaintedfarthestfromtheearth,arethoughtnearesttoit。Hereinliesthedifficulty,whichvanishesifweexpressthethingmoreclearlyandfreefromambiguity,thus:howcomesitthattotheeyethevisibleheadwhichisnearestthetangibleearthseemsfarthestfromtheearth,andthevisiblefeet,whicharefarthestfromthetangibleearthseemnearesttheearth?Thequestionbeingthusproposed,whoseesnotthedifficultyisfoundedonasuppositionthattheeye,orvisivefaculty,orratherthesoulbymeansthereof,shouldjudgeofthesituationofvisibleobjectswithreferencetotheirdistancefromthetangibleearth?Whereasitisevidentthetangibleearthisnotperceivedbysight:andithathbeenshewninthetwolastprecedingsectionsthatthelocationofvisibleobjectsisdeterminedonlybythedistancetheybearfromoneanother;andthatitisnonsensetotalkofdistance,farornear,betweenavisibleandtangiblething。
114。Ifweconfineourthoughtstotheproperobjectsofsight,thewholeisplainandeasy。Theheadispaintedfarthestfrom,andthefeetnearestto,thevisibleearth;andsotheyappeartobe。Whatistherestrangeorunaccountableinthis?Letussupposethepicturesinthefundoftheeyetobetheimmediateobjectsofthesight。Theconsequenceisthatthingsshouldappearinthesameposturetheyarepaintedin;andisitnotso?Theheadwhichisseenseemsfarthestfromtheearthwhichisseen;andthefeetwhichareseenseemnearesttotheearth,whichisseen;andjustsotheyarepainted。
115。But,sayyou,thepictureofthemanisinverted,andyettheappearanceiserect:Iask,whatmeanyoubythepictureoftheman,or,whichisthesamething,thevisibleman’sbeinginverted?Youtellmeitisinverted,becausetheheelsareuppermostandtheheadundermost?Explainmethis。
Yousaythatbythehead’sbeingundermostyoumeanthatitisnearesttotheearth;andbytheheelsbeinguppermostthattheyarefarthestfromtheearth。Iaskagainwhatearthyoumean?Youcannotmeantheearththatispaintedontheeye,orthevisibleearth:forthepictureoftheheadisfarthestfromthepictureoftheearth,andthepictureofthefeetnearesttothepictureoftheearth;andaccordinglythevisibleheadisfarthestfromthevisibleearth,andthevisiblefeetnearesttoit。Itremains,therefore,thatyoumeanthetangibleearth,andsodeterminethesituationofvisiblethingswithrespecttotangiblethings;contrarytowhathathbeendemonstratedinsect。111and112。Thetwodistinctprovincesofsightandtouchshouldbeconsideredapart,andasiftheirobjectshadnointercourse,nomannerofrelationonetoanother,inpointofdistanceorposition。
116。Farther,whatgreatlycontributestomakeusmistakeinthismatteristhatwhenwethinkofthepicturesinthefundoftheeye,weimagineourselveslookingonthefundofanother’seye,oranotherlookingonthefundofourowneye,andbeholdingthepicturespaintedthereon。SupposetwoeyesAandB:AfromsomedistancelookingonthepicturesinBseestheminverted,andforthatreasonconcludestheyareinvertedinB:butthisiswrong。ThereareprojectedinlittleonthebottomofAtheimagesofthepicturesof,suppose,man,earth,etc。,whicharepaintedonB。
AndbesidesthesetheeyeBitself,andtheobjectswhichenvironit,togetherwithanotherearth,areprojectedinalargersizeonA。Now,bytheeyeAtheselargerimagesaredeemedthetrueobjects,andthelesseronlypicturesinminiature。Anditiswithrespecttothosegreaterimagesthatitdeterminesthesituationofthesmallerimages:sothatcomparingthelittlemanwiththegreatearth,Ajudgeshiminverted,orthatthefeetarefarthestfromandtheheadnearesttothegreatearth。Whereas,ifAcomparethelittlemanwiththelittleearth,thenhewillappearerect,i。e。hisheadshallseemfarthestfrom,andhisfeetnearestto,thelittleearth。ButwemustconsiderthatBdoesnotseetwoearthsasAdoes:itseesonlywhatisrepresentedbythelittlepicturesinA,andconsequentlyshalljudgethemanerect。For,intruth,themaninBisnotinverted,fortherethefeetarenexttheearth;butitistherepresentationofitinAwhichisinverted,fortheretheheadoftherepresentationofthepictureofthemaninBisnexttheearth,andthefeetfarthestfromtheearth,meaningtheearthwhichiswithouttherepresentationofthepicturesinB。ForifyoutakethelittleimagesofthepicturesinB,andconsiderthembythemselves,andwithrespectonlytooneanother,theyareallerectandintheirnaturalposture。
117。Farther,thereliesamistakeinourimaginingthatthepicturesofexternalobjectsarepaintedonthebottomoftheeye。Ithathbeenshewnthereisnoresemblancebetweentheideasofsightandthingstangible。Ithathlikewisebeendemonstratedthattheproperobjectsofsightdonotexistwithoutthemind。Whenceitclearlyfollowsthatthepicturespaintedonthebottomoftheeyearenotthepicturesofexternalobjects。Letanyoneconsulthisownthoughts,andthensaywhataffinity,whatlikenessthereisbetweenthatcertainvarietyanddispositionofcolourswhichconstitutethevisibleman,orpictureofaman,andthatothercombinationoffardifferentideas,sensiblebytouch,whichcomposethetangibleman。Butifthisbethecase,howcometheytobeaccountedpicturesorimages,sincethatsupposesthemtocopyorrepresentsomeoriginalsorother?
118。TowhichIanswer:intheforementionedinstancetheeyeAtakesthelittleimages,includedwithintherepresentationoftheothereyeB,tobepicturesorcopies,whereofthearchetypesarenotthingsexistingwithout,butthelargerpicturesprojectedonitsownfund:andwhichbyAarenotthoughtpictures,buttheoriginals,ortruethingsthemselves。
ThoughifwesupposeathirdeyeCfromaduedistancetobeholdthefundofA,thenindeedthethingsprojectedthereonshall,toC,seempicturesorimagesinthesamesensethatthoseprojectedonBdotoA。
119。Rightlytoconceivethispointwemustcarefullydistinguishbetweentheideasofsightandtouch,betweenthevisibleandtangibleeye;forcertainlyonthetangibleeyenothingeitherisorseemstobepainted。
Again,thevisibleeye,aswellasallothervisibleobjects,hathbeenshewntoexistonlyinthemind,whichperceivingitsownideas,andcomparingthemtogether,callssomepicturesinrespectofothers。Whathathbeensaid,beingrightlycomprehendedandlaidtogether,doth,Ithink,affordafullandgenuineexplicationoftheerectappearanceofobjects;
whichphenomenon,Imustconfess,Idonotseehowitcanbeexplainedbyanytheoriesofvisionhithertomadepublic。
120。Intreatingofthesethingstheuseoflanguageisapttooccasionsomeobscurityandconfusion,andcreateinuswrongideas;forlanguagebeingaccommodatedtothecommonnotionsandprejudicesofmen,itisscarcepossibletodeliverthenakedandprecisetruthwithoutgreatcircumlocution,impropriety,and(toanunwaryreader)seemingcontradictions;IdothereforeonceforalldesirewhoevershallthinkitworthhiswhiletounderstandwhatIhavewrittenconcerningvision,thathewouldnotstickinthisorthatphrase,ormannerofexpression,butcandidlycollectmymeaningfromthewholesumandtenorofmydiscourse,andlayingasidethewordsasmuchaspossible,considerthebarenotionsthemselves,andthenjudgewhethertheyareagreeabletotruthandhisownexperience,orno。
121。Wehaveshewnthewaywhereinthemindbymediationofvisibleideasdothperceiveorapprehendthedistance,magnitudeandsituationoftangibleobjects。Wecomenowtoinquiremoreparticularlyconcerningthedifferencebetweentheideasofsightandtouch,whicharecalledbythesamenames,andseewhethertherebeanyideacommontobothsenses。
Fromwhatwehaveatlargesetforthanddemonstratedintheforegoingpartsofthistreatise,itisplainthereisnooneselfsamenumericalextensionperceivedbothbysightandtouch;butthattheparticularfiguresandextensionsperceivedbysight,howevertheymaybecalledbythesamenamesandreputedthesamethingswiththoseperceivedbytouch,areneverthelessdifferent,andhaveanexistencedistinctandseparatefromthem:sothatthequestionisnotnowconcerningthesamenumericalideas,butwhethertherebeanyoneandthesamesortofspeciesofideasequallyperceivabletobothsenses;or,inotherwords,whetherextension,figure,andmotionperceivedbysightarenotspecificallydistinctfromextension,figure,andmotionperceivedbytouch。
122。ButbeforeIcomemoreparticularlytodiscussthismatter,Ifinditpropertoconsiderextensioninabstract:forofthisthereismuchtalk,andIamapttothinkthatwhenmenspeakofextensionasbeinganideacommontotwosenses,itiswithasecretsuppositionthatwecansingleoutextensionfromallothertangibleandvisiblequalities,andformthereofanabstractidea,whichideatheywillhavecommonbothtosightandtouch。Wearethereforetounderstandbyextensioninabstractanideaofextension,forinstance,alineorsurfaceentirelystrippedofallothersensiblequalitiesandcircumstancesthatmightdetermineittoanyparticularexistence;itisneitherblacknorwhite,norred,norhathitanycolouratall,oranytangiblequalitywhatsoeverandconsequentlyitisofnofinitedeterminatemagnitude:forthatwhichboundsordistinguishesoneextensionfromanotherissomequalityorcircumstancewhereintheydisagree。
123。NowIdonotfindthatIcanperceive,imagine,oranywiseframeinmymindsuchanabstractideaasisherespokenof。Alineorsurfacewhichisneitherblack,norwhite,norblue,noryellow,etc。,norlong,norshort,norrough,norsmooth,norsquare,norround,etc。,isperfectlyincomprehensible。ThisIamsureofastomyself:howfarthefacultiesofothermenmayreachtheybestcantell。
124。Itiscommonlysaidthattheobjectofgeometryisabstractextension:
butgeometrycontemplatesfigures:now,figureistheterminationofmagnitude:
butwehaveshewnthatextensioninabstracthathnofinitedeterminatemagnitude。Whenceitclearlyfollowsthatitcanhavenofigure,andconsequentlyisnottheobjectofgeometry。Itisindeedatenetaswellofthemodernasoftheancientphilosophersthatallgeneraltruthsareconcerninguniversalabstractideas;withoutwhich,wearetold,therecouldbenoscience,nodemonstrationofanygeneralpropositioningeometry。Butitwerenohardmatter,didIthinkitnecessarytomypresentpurpose,toshewthatpropositionsanddemonstrationsingeometrymightbeuniversal,thoughtheywhomakethemneverthinkofabstractgeneralideasoftrianglesorcircles。
125。Afterreiteratedendeavourstoapprehendthegeneralideaatriangle,Ihavefounditaltogetherincomprehensible。Andsurelyifanyonewereabletointroducethatideaintomymind,itmustbetheauthoroftheEssayconcerningHumanUnderstanding;hewhohassofardistinguishedhimselffromthegeneralityofwritersbytheclearness—andsignificancyofwhathesays。Letusthereforeseehowthiscelebratedauthordescribesthegeneralorabstractideaofatriangle。’Itmustbe(sayshe)neitherobliquenorrectangular,neitherequilateral,equicrural,norscalenum;
butallandnoneoftheseatonce。Ineffect,itissomewhatimperfectthatcannotexist;anidea,whereinsomepartsofseveraldifferentandinconsistentideasareputtogether’EssayonHum。Understand。B。
iv。C。7。S。9·;Thisistheideawhichhethinksneedfulfortheenlargementofknowledge,whichisthesubjectofmathematicaldemonstration,andwithoutwhichwecouldnevercometoknowanygeneralpropositionconcerningtriangles。Thatauthoracknowledgesitdoth’requiresomepainsandskilltoformthisgeneralideaofatriangle。’ibid。Buthadhecalledtomindwhathesaysinanotherplace,towit,’Thatideasofmixedmodeswhereinanyinconsistentideasareputtogethercannotsomuchasexistinthemind,i。e。beconceived。’vid。B。iii。C。10。S。33。ibid。Isay,hadthisoccurredtohisthoughts,itisnotimprobablehewouldhaveowneditaboveallthepainsandskillhewasmasteroftoformtheabove—mentionedideaofatriangle,whichismadeupofmanifest,staringcontradictions。Thatamanwholaidsogreatastressonclearanddeterminateideasshouldneverthelesstalkatthisrateseemsverysurprising。Butthewonderwilllessenifitbeconsideredthatthesourcewhencethisopinionflowsistheprolificwombwhichhasbroughtforthinnumerableerrorsanddifficultiesinallpartsofphilosophyandinallthesciences:butthismatter,takeninitsfullextent,wereasubjecttoocomprehensivetobeinsistedoninthisplace。Andsomuchforextensioninabstract。
126。Some,perhaps,maythinkpurespace,vacuum,ortrinedimensiontobeequallytheobjectofsightandtouch:butthoughwehaveaverygreatpropensiontothinktheideasofoutnessandspacetobetheimmediateobjectofsight,yet,ifImistakenot,intheforegoingpartsofthisessaythathathbeenclearlydemonstatedtobeameredelusion,arisingfromthequickandsuddensuggestionoffancy,whichsocloselyconnectstheideaofdistancewiththoseofsight,thatweareapttothinkitisitselfaproperandimmediateobjectofthatsensetillreasoncorrectsthemistake。