第1章
加入书架 A- A+
点击下载App,搜索"An Essay Towards a New Theory of Vision",免费读到尾

  1。Mydesignistoshewthemannerwhereinweperceivebysightthedistance,magnitude,andsituationofobjects。Alsotoconsiderthedifferencethereisbetwixttheideasofsightandtouch,andwhethertherebeanyideacommontobothsenses。

  2。Itis,Ithink,agreedbyallthatdistance,ofitselfandimmediately,cannotbeseen。FordistancebeingaLinedirectedend—wisetotheeye,itprojectsonlyonepointinthefundoftheeye,whichpointremainsinvariablythesame,whetherthedistancebelongerorshorter。

  3。Ifinditalsoacknowledgedthattheestimatewemakeofthedistanceofobjectsconsiderablyremoteisratheranactofjudgmentgroundedonexperiencethanofsense。Forexample,whenIperceiveagreatnumberofintermediateobjects,suchashouses,fields,rivers,andthelike,whichIhaveexperiencedtotakeupaconsiderablespace,IthenceformajudgmentorconclusionthattheobjectIseebeyondthemisatagreatdistance。

  Again,whenanobjectappearsfaintandsmall,whichataneardistanceIhaveexperiencedtomakeavigorousandlargeappearance,Iinstantlyconcludeittobefaroff:Andthis,’tisevident,istheresultofexperience;

  withoutwhich,fromthefaintnessandlittlenessIshouldnothaveinferredanythingconcerningthedistanceofobjects。

  4。Butwhenanobjectisplacedatsonearadistanceasthattheintervalbetweentheeyesbearsanysensibleproportiontoit,theopinionofspeculativemenisthatthetwoopticaxes(thefancythatweseeonlywithoneeyeatoncebeingexploded)concurringattheobjectdotheremakeanangle,bymeansofwhich,accordingasitisgreaterorlesser,theobjectisperceivedtobenearerorfartheroff。[1]

  5。Betwixtwhichandtheforegoingmannerofestimatingdistancethereisthisremarkabledifference:thatwhereastherewasnoapparent,necessaryconnexionbetweensmalldistanceandalargeandstrongappearance,orbetweengreatdistanceandalittleandfaintappearance,thereappearsaverynecessaryconnexionbetweenanobtuseangleandneardistance,andanacuteangleandfartherdistance。Itdoesnotintheleastdependuponexperience,butmaybeevidentlyknownbyanyonebeforehehadexperiencedit,thatthenearertheconcurrenceoftheopticaxes,thegreatertheangle,andtheremotertheirconcurrenceis,thelesserwillbetheanglecomprehendedbythem。

  6。Thereisanotherwaymentionedbyopticwriters,wherebytheywillhaveusjudgeofthosedistances,inrespectofwhichthebreadthofthepupilhathanysensiblebigness:Andthatisthegreaterorlesserdivergencyoftherays,whichissuingfromthevisiblepointdofallonthepupil,thatpointbeingjudgednearestwhichisseenbymostdivergingrays,andthatremoterwhichisseenbylessdivergingrays:andsoon,theapparentdistancestillincreasing,asthedivergencyoftheraysdecreases,tillatlengthitbecomesinfinite,whentheraysthatfallonthepupilaretosenseparallel。Andafterthismanneritissaidweperceivedistancewhenwelookonlywithoneeye。

  7。Inthiscasealsoitisplainwearenotbeholdingtoexperience:

  itbeingacertain,necessarytruththatthenearerthedirectraysfallingontheeyeapproachtoaparallelism,thefartheroffisthepointoftheirintersection,orthevisiblepointfromwhencetheyflow。

  8。Nowthoughtheaccountsheregivenofperceivingneardistancebysightarereceivedfortrue,andaccordinglymadeuseofindeterminingtheapparentplacesofobjects,theydoneverthelessseemveryunsatisfactory:

  andthatforthesefollowingreasons。

  9。Itisevidentthatwhenthemindperceivesanyidea,notimmediatelyandofitself,itmustbebythemeansofsomeotheridea。Thus,forinstance,thepassionswhichareinthemindofanotherareofthemselvestomeinvisible。

  Imayneverthelessperceivethembysight,thoughnotimmediately,yetbymeansofthecolourstheyproduceinthecountenance。Weoftenseeshameorfearinthelooksofaman,byperceivingthechangesofhiscountenancetoredorpale。

  10。Moreoveritisevidentthatnoideawhichisnotitselfperceivedcanbethemeansofperceivinganyotheridea。IfIdonotperceivetherednessorpalenessofaman’sfacethemselves,itisimpossibleIshouldperceivebythemthepassionswhichareinhismind。

  11。Nowfromsect。2itisplainthatdistanceisinitsownnatureimperceptible,andyetitisperceivedbysight。Itremains,therefore,thatitbebroughtintoviewbymeansofsomeotherideathatisitselfimmediatelyperceivedintheactofvision。

  I2。Butthoselinesandangles,bymeanswhereofsomemenpretendtoexplaintheperceptionofdistance,arethemselvesnotatallperceived,noraretheyintrutheverthoughtofbythoseunskilfulinoptics。Iappealtoanyone’sexperiencewhetheruponsightofanobjecthecomputesitsdistancebythebignessoftheanglemadebythemeetingofthetwoopticaxes?Orwhetherheeverthinksofthegreaterorlesserdivergencyoftherays,whicharrivefromanypointtohispupil?Everyoneishimselfthebestjudgeofwhatheperceives,andwhatnot。invainshallanymantellmevariousideasofdistance,solongasImyselfamconsciousofnosuchthing。

  13。Since,therefore,thoseanglesandlinesarenotthemselvesperceivedbysight,itfollowsfromsect。10thattheminddothnotbythemjudgeofthedistanceofobjects。

  14。Thetruthofthisassertionwillbeyetfartherevidenttoanyonethatconsidersthoselinesandangleshavenorealexistenceinnature,beingonlyanhypothesisframedbythemathematicians,andbythemintroducedintooptics,thattheymighttreatofthatscienceinageometricalway。

  15。ThelastreasonIshallgiveforrejectingthatdoctrineis,thatthoughweshouldgranttherealexistenceofthoseopticangles,etc。,andthatitwaspossibleforthemindtoperceivethem,yettheseprincipleswouldnotbefoundsufficienttoexplainthephenomenaofdistance,asshallbeshewnhereafter。

  16。Now,itbeingalreadyshewnthatdistanceissuggestedtothemindbythemediationofsomeotherideawhichisitselfperceivedintheactofseeing,itremainsthatweinquirewhatideasorsensationstherebethatattendvision,untowhichwemaysupposetheideasofdistanceareconnected,andbywhichtheyareintroducedintothemind。Andfirst,itiscertainbyexperiencethatwhenwelookatanearobjectwithbotheyes,accordingasitapproachesorrecedesfromus,wealterthedispositionofoureyes,bylesseningorwideningtheintervalbetweenthepupils。Thisdispositionorturnoftheeyesisattendedwithasensation,whichseemstometobethatwhichinthiscasebringstheideaofgreaterorlesserdistanceintothemind。

  17。Notthatthereisanynaturalornecessaryconnexionbetweenthesensationweperceivebytheturnoftheeyesandgreaterorlesserdistance,butbecausethemindhasbyconstantexperiencefoundthedifferentsensationscorrespondingtothedifferentdispositionsoftheeyestobeattendedeachwithadifferentdegreeofdistanceintheobject,therehasgrownanhabitualorcustomaryconnexionbetweenthosetwosortsofideas,sothatthemindnosoonerperceivesthesensationarisingfromthedifferentturnitgivestheeyes,Inordertobringthepupilsnearerorfartherasunder,butitwithalperceivesthedifferentideaofdistancewhichwaswonttobeconnectedwiththatsensation;justasuponhearingacertainsound,theideaisimmediatelysuggestedtotheunderstandingwhichcustomhadunitedwithit。

  18NordoIseehowIcaneasilybemistakeninthismatter。Iknowevidentlythatdistanceisnotperceivedofitself。Thatbyconsequenceitmustbeperceivedbymeansofsomeotherideawhichisimmediatelyperceived,andvarieswiththedifferentdegreesofdistance。Iknowalsothatthesensationarisingfromtheturnoftheeyesisofitselfimmediatelyperceived,andvariousdegreesthereofareconnectedwithdifferentdistances,whichneverfailtoaccompanythemintomymind,whenIviewanobjectdistinctlywithbotheyes,whosedistanceissosmallthatinrespectofittheintervalbetweentheeyeshasanyconsiderablemagnitude。

  19。Iknowitisareceivedopinionthatbyalteringthedispositionoftheeyesthemindperceiveswhethertheangleoftheopticaxesorthelateralanglescomprehendedbetweentheintervaloftheeyesandtheopticaxesaremadegreaterorlesser;andthataccordinglybyakindofnaturalgeometryitjudgesthepointoftheirintersectiontobenearerorfartheroff。ButthatthisisnottrueIamconvincedbymyownexperience,sinceIamnotconsciousthatImakeanysuchuseoftheperceptionIhavebytheturnofmyeyes。Andformetomakethosejudgments,anddrawthoseconclusionsfromit,withoutknowingthatIdoso,seemsaltogetherincomprehensible。

  20。Fromallwhichitfollowsthatthejudgmentwemakeofthedistanceofanobject,viewedwithbotheyes,isentirelytheresultofexperience。

  Ifwehadnotconstantlyfoundcertainsensationsarisingfromthevariousdispositionoftheeyes,attendedwithcertaindegreesofdistance,weshouldnevermakethosesuddenjudgmentsfromthemconcerningthedistanceofobjects;nomorethanwewouldpretendtojudgeaman’sthoughtsbyhispronouncingwordswehadneverheardbefore。

  21。Secondly,anobjectplacedatacertaindistancefromtheeye,towhichthebreadthofthepupilbearsaconsiderableproportion,beingmadetoapproach,isseenmoreconfusedly:andtheneareritisbroughtthemoreconfusedappearanceitmakes。Andthisbeingfoundconstantlytobeso,therearisethinthemindanhabitualconnexionbetweentheseveraldegreesofconfusionanddistance;thegreaterconfusionstillimplyingthelesserdistance,andthelesserconfusionthegreaterdistanceoftheobject。

  22。Thisconfusedappearanceoftheobjectdoththereforeseemtobethemediumwherebythemindjudgethofdistanceinthosecaseswhereinthemostapprovedwritersofopticswillhaveitjudgebythedifferentdivergencywithwhichtheraysflowingfromtheradiatingpointfallonthepupil。Noman,Ibelieve,willpretendtoseeorfeelthoseimaginaryanglesthattheraysaresupposedtoformaccordingtotheirvariousinclinationsonhiseye。Buthecannotchooseseeingwhethertheobjectappearmoreorlessconfused。Itisthereforeamanifestconsequencefromwhatbathbeendemonstrated,thatinsteadofthegreaterorlesser—divergencyoftherays,themindmakesuseofthegreaterorlesserconfusednessoftheappearance,therebytodeterminetheapparentplaceofanobject。

  23Nordothitavailtosaythereisnotanynecessaryconnexionbetweenconfusedvisionanddistance,greatorsmall。ForIaskanymanwhatnecessaryconnexionheseesbetweentherednessofablushandshame?Andyetnosoonershallhebeholdthatcolourtoariseinthefaceofanother,butitbringsintohisandtheideaofthatpassionwhichhathbeenobservedtoaccompanyit。

  24。Whatseemstohavemisledthewritersofopticsinthismatteristhattheyimaginemenjudgeofdistanceastheydoofaconclusioninmathematics,betwixtwhichandthepremisesitisindeedabsolutelyrequisitetherebeanapparent,necessaryconnexion:butitisfarotherwiseinthesuddenjudgmentsmenmakeofdistance。Wearenottothinkthatbrutesandchildren,orevengrownreasonablemen,whenevertheyperceiveanobjecttoapproach,ordepartfromthem,doitbyvirtueofgeometryanddemonstration。

  25。Thatoneideamaysuggestanothertotheminditwillsufficethattheyhavebeenobservedtogotogether,withoutanydemonstrationofthenecessityoftheircoexistence,orwithoutsomuchasknowingwhatitisthatmakesthemsotocoexist。Ofthisthereareinnumerableinstancesofwhichnoonecanbeignorant。

  26。Thus,greaterconfusionhavingbeenconstantlyattendedwithnearerdistance,nosooneristheformerideaperceived,butitsuggeststhelattertoourthoughts。AndifithadbeentheordinarycourseofNaturethatthefartheroffanobjectwereplaced,themoreconfuseditshouldappear,itiscertaintheverysameperceptionthatnowmakesusthinkanobjectapproacheswouldthenhavemadeustoimagineitwentfartheroff。Thatperception,abstractingfromcustomandexperience,beingequallyfittedtoproducetheideaofgreatdistance,orsmalldistance,ornodistanceatall。

  27。Thirdly,anobjectbeingplacedatthedistanceabovespecified,andbroughtnearertotheeye,wemayneverthelessprevent,atleastforsometime,theappearancesgrowingmoreconfused,bystrainingtheeye。

  Inwhichcasethatsensationsuppliestheplaceofconfusedvisioninaidingthemindtojudgeofthedistanceoftheobject;itbeingesteemedsomuchthenearerbyhowmuchtheeffortorstrainingoftheeyeinordertodistinctvisionisgreater。

  28。Ihaveheresetdownthosesensationsorideasthatseemtobetheconstantandgeneraloccasionsofintroducingintothemindthedifferentideasofneardistance。Itistrueinmostcasesthatdiversothercircumstancescontributetoframeourideaofdistance,towit,theparticularnumber,size,kind,etc。,ofthethingsseen。Concerningwhich,aswellasallothertheforementionedoccasionswhichsuggestdistance,Ishallonlyobservetheyhavenoneofthem,intheirownnature,anyrelationorconnexionwithit:norisitpossibletheyshouldeversignifythevariousdegreesthereof,otherwisethanasbyexperiencetheyhavebeenfoundtobeconnectedwiththem。

  29。Ishallproceedupontheseprinciplestoaccountforaphenomenonwhichhashithertostrangelypuzzledthewritersofoptics,andissofarfrombeingaccountedforbyanyoftheirtheoriesofvisionthatitis,bytheirownconfession,plainlyrepugnanttothem;andofconsequence,ifnothingelsecouldbeobjected,werealonesufficienttobringtheircreditinquestion。ThewholedifficultyIshalllaybeforeyouinthewordsofthelearnedDr。Barrow,withwhichheconcludeshisopticlectures。

  ’Ihaveheredeliveredwhatmythoughtshavesuggestedtomeconcerningthatpartofopticswhichismoreproperlymathematical。Asfortheotherpartsofthatscience(whichbeingratherphysical,doconsequentlyaboundwithplausibleconjecturesinsteadofcertainprinciples),therehasinthemscarceanythingoccur’dtomyobservationdifferentfromwhathasbeenalreadysaidbyKepler,Scheinerus,Descartes,andothers。Andmethinks,Ihadbettersaynothingatall),thanrepeatthatwhichhasbeensooftensaidbyothers。Ithinkitthereforehightimetotakemyleaveofthissubject:butbeforeIquititforgoodandall,thefairandingenuousdealingthatIowebothtoyouandtotruthobligethmetoacquaintyouwithacertainuntowarddifficulty,whichseemsdirectlyoppositetothedoctrineIhavebeenhithertoinculcating,atleast,admitsofnosolutionfromit。Inshortitisthis。BeforethedoubleconvexglassorconcavespeculumEBF,letthepointAbeplacedatsuchadistancethattheraysproceedingfromA,afterrefractionorreflexion,bebroughttounitesomewhereintheAxAB。Andsupposethepointofunion(i。e。theimageofthepointA,ashathbeenalreadysetforth)tobeZ;betweenwhichandB,thevertexoftheglassorspeculum,conceivetheeyetobeanywhereplaced。Thequestionnowis,wherethepointAoughttoappear?ExperienceshewsthatitdoesnotappearbehindatthepointZ,anditwerecontrarytonaturethatitshould,sincealltheimpressionwhichaffectsthesensecomesfromtowardsA。Butfromourtenetsitshouldseemtofollowthatitwouldappearbeforetheeyeatavastdistanceoff,sogreatasshouldinsomesortsurpassallsensibledistance。Forsinceifweexcludeallanticipationsandprejudices,everyobjectappearsbysomuchthefartheroff,byhowmuchtheraysitsendstotheeyearelessdiverging。Andthatobjectisthoughttobemostremotefromwhichparallelraysproceeduntotheeye。Reasonwouldmakeonethinkthatobjectshouldappearatyetagreaterdistancewhichisseenbyconvergingrays。MoreoveritmayingeneralbeaskedconcerningthiscasewhatitisthatdeterminestheapparentplaceofthepointA,andmakethittoappearafteraconstantmannersometimesnearer,atothertimesfartheroff?TowhichdoubtIseenothingthatcanbeansweredagreeabletotheprincipleswehavelaiddownexceptonlythatthepointAoughtalwaystoappearextremelyremote。ButonthecontraryweareassuredbyexperiencethatthepointAappearsvariouslydistant,accordingtothedifferentsituationsoftheeyebetweenthepointsBandZ。Andthatitdothnever(ifatall)seemfartheroff,thanitwouldifitwerebeheldbythenakedeye,butonthecontraryitdothsometimesappearmuchnearer。

  Nay,itisevencertainthatbyhowmuchtheraysfallingontheeyedomoreconvergebysomuchthenearerdoththeobjectseemtoapproach。FortheeyebeingplacedclosetothepointB,theobjectAappearsnearlyinitsownnaturalplace,ifthepointBistakenintheglass,oratthesamedistance,ifinthespeculum。TheeyebeingbroughtbacktoO,theobjectseemstodrawnear:andbeingcometoPitbeholdsitstillnearer。

  Andsoonlittleandlittle,tillatlengththeeyebeingplacedsomewhere,supposeatQ,theobjectappearingextremelynear,beginstovanishintomereconfusion。Allwhichdothseemrepugnanttoourprinciples,atleastnotrightlytoagreewiththem。Norisourtenetalonestruckatbythisexperiment,butlikewiseallothersthatevercametomyknowledgeare,everywhitasmuch,endangeredbyit。Theancientoneespecially(whichismostcommonlyreceived,andcomesnearesttomine)seemstobesoeffectuallyoverthrowntherebythatthemostlearnedTacquethasbeenforcedtorejectthatprinciple,asfalseanduncertain,onwhichalonehehadbuiltalmosthiswholeCatoptrics;andconsequentlybytakingawaythefoundation,hathhimselfpulleddownthesuperstructurehehadraisedonit。Which,nevertheless,Idonotbelievehewouldhavedonehadhebutconsideredthewholemattermorethoroughly,andexaminedthedifficultytothebottom。

  Butasforme,neitherthisnoranyotherdifficultyshallhavesogreataninfluenceonmeastomakemerenouncethatwhichIknowtobemanifestlyagreeabletoreason:especiallywhen,asitherefallsout,thedifficultyisfoundedinthepeculiarnatureofacertainoddandparticularcase。

  Forinthepresentcasesomethingpeculiarlieshid,whichbeinginvolvedinthesubtiltyofnaturewill,perhaps,hardlybediscoveredtillsuchtimeasthemannerofvisionismoreperfectlymadeknown。Concerningwhich,Imustown,Ihavehithertobeenabletofindoutnothingthathastheleastshewofprobability,nottomentioncertainty。Ishall,therefore,leavethisknottobeuntiedbyyou,wishingyoumayhavebettersuccessinitthanIhavehad。’

  30。Theancientandreceivedprinciple,whichDr。BarrowherementionsasthemainfoundationofTacquet’sCatoptrics,isthat:everyvisiblepointseenbyreflexionfromaspeculumshallappearplacedattheintersectionofthereflectedray,andtheperpendicularofincidence。Whichintersectioninthepresentcase,happeningtobebehindtheeye,itgreatlyshakestheauthorityofthatprinciple,whereontheaforementionedauthorproceedsthroughouthiswholeCatoptricsindeterminingtheapparentplaceofobjectsseenbyreflexionfromanykindofspeculum。

  31。Letusnowseehowthisphenomenonagreeswithourtenets。TheeyetheneareritisplacedtothepointBintheforegoingfigures,themoredistinctistheappearanceoftheobject;butasitrecedestoOtheappearancegrowsmoreconfused;andatPitseestheobjectyetmoreconfused;andsoontilltheeyebeingbroughtbacktoZseestheobjectinthegreatestconfusionofall。Whereforebysect。21theobjectshouldseemtoapproachtheeyegraduallyasitrecedesfromthepointB,thatis,atOitshould(inconsequenceoftheprincipleIhavelaiddownintheaforesaidsection)

  seemnearerthanitdidatB,andatPnearerthanat0,andatQnearerthanatP;andsoon,tillitquitevanishesatZ。Whichistheverymatteroffact,asanyonethatpleasesmayeasilysatisfyhimselfbyexperiment。

  32。ThiscaseismuchthesameasifweshouldsupposeanEnglishmantomeetaforeignerwhousedthesamewordswiththeEnglish,butinadirectcontrarysignification。TheEnglishmanwouldnotfailtomakeawrongjudgmentoftheideasannexedtothosesoundsinthemindofhimthatusedthem。Justso,inthepresentcasetheobjectspeaks(ifImaysosay)withwordsthattheeyeiswellacquaintedwith,thatis,confusionsofappearance;butwhereasheretoforethegreaterconfusionswerealwayswonttosignifynearerdistances,theyhaveinthiscaseadirect,contrarysignification,beingconnectedwiththegreaterdistances。Whenceitfollowsthattheeyemustunavoidablybemistaken,sinceitwilltaketheconfusionsinthesenseithasbeenusedto,whichisdirectlyopposedtothetrue。

  33。Thisphenomenonasitentirelysubvertstheopinionofthosewhowillhaveusjudgeofdistancebylinesandangles,onwhichsuppositionitisaltogetherinexplicable,soitseemstomenosmallconfirmationofthetruthofthatprinciplewherebyitisexplained。Butinordercoamorefullexplicationofthispoint,andtoshewhowfarthehypothesisofthemind’sjudgingbythevariousdivergencyofraysmaybeofuseindeterminingtheapparentplaceofanobject,itwillbenecessarytopremisesomefewthings,whicharealreadywellknowntothosewhohaveanyskillindioptrics。

  34。First,anyradiatingpointisthendistinctlyseenwhentheraysproceedingfromitare,bytherefractivepowerofthecrystalline,accuratelyreunitedintheretinaorfundoftheeye:butiftheyarereunited,eitherbeforetheyarriveattheretina,oraftertheyhavepassedit,thenthereisconfusedvision。

  35。Secondly,supposeintheadjacentfiguresNPrepresentaneyedulyframedandretainingitsnaturalfigure。InFig。1theraysfallingnearlyparallelontheeye,arebythecrystallineABrefracted,soastheirfocusorpointofunionFfallsexactlyontheretina:butiftheraysfallsensiblydivergingontheeye,asinFig。2,thentheirfocusfallsbeyondtheretina:oriftheraysaremadetoconvergebythelensQSbeforetheycomeattheeye,asinFig。3,theirfocusFwillfallbeforetheretina。Inwhichtwolastcasesitisevidentfromt[sic]theforegoingsectionthattheappearanceofthepointZisconfused。Andbyhowmuchthegreateristheconvergency,ordivergency,oftheraysfallingonthepupil,bysomuchthefartherwillthepointoftheirreunionbefromtheretina,eitherbeforeorbehindit,andconsequentlythepointZwillappearbysomuchthemoreconfused。Andthis,bythebye,mayshewusthedifferencebetweenconfusedandfaintvision。Confusedvisioniswhentheraysproceedingsfromeachdistinctpointoftheobjectarenotaccuratelyrecollectedinonecorrespondingpointontheretina,buttakeupsomespacethereon,sothatraysfromdifferentpointsbecomemixedandconfusedtogether。Thisisopposedtoadistinctvision,andattendsnearobjects。Faintvisioniswhenbyreasonofthedistanceoftheobjectorgrossnessoftheinterjacentmediumfewraysarrivefromtheobjecttotheeye。Thisisopposedtovigorousorclearvision,andattendsremoteobjects。Buttoreturn。

  36。Theeye,or(tospeaktruly)themind,perceivingonlytheconfusionitself,withouteverconsideringthecausefromwhichitproceeds,dothconstantlyannexthesamedegreeofdistancetothesamedegreeofconfusion。

  Whetherthatconfusionbeoccasionedbyconvergingorbydivergingrays,itmattersnot。WhenceitfollowsthattheeyeviewingtheobjectZthroughtheglassQS(whichbyrefractioncauseththeraysZQ,ZS,etc。,toconverge)

  shouldjudgeittobeatsuchanearnessatwhichifitwereplaceditwouldradiateontheeyewithraysdivergingtothatdegreeaswouldproducethesameconfusionwhichisnowproducedbyconvergingrays,i。e。wouldcoveraportionoftheretinaequaltoDC(vid。Fig。3supra)。

  Butthenthismustbeunderstood(touseDr。Barrow’sphrase)seclusisprænotionibusetpræjudiciis,incaseweabstractfromallothercircumstancesofvision,suchasthefigure,size,faintness,etc。ofthevisibleobjects;allwhichdoordinarilyconcurtoformourideaofdistance,themindhavingbyfrequentexperienceobservedtheirseveralsortsordegreestobeconnetedwithvariousdistances。

  37Itplainlyfollowsfromwhathathbeensaidthatapersonperfectlypurblind(i。e。thatcouldnotseeanobjectdistinctlybutwhenplacedclosetohiseye)wouldnotmakethesamewrongjudgmentthatothersdointheforementionedcase。Fortohimgreaterconfusionsconstantlysuggestinggreaterdistances,hemust,asherecedesfromtheglassandtheobjectgrowsmoreconfused,judgeittobeatafartherdistance,contrarytowhattheydowhohavehadtheperceptionoftheobjectsgrowingmoreconfusedconnectedwiththeideaofapproach。

  38。Hencealsoitdothappeartheremaybegooduseofcomputationbylinesandanglesinoptics;notthatthemindjudgethofdistanceimmediatelybythem,butbecauseitjudgethbysomewhatwhichisconnectedwiththem,andtothedeterminationwhereoftheymaybesubservient。Thusthemindjudgingofthedistanceofanobjectbytheconfusednessofitsappearance,andthisconfusednessbeinggreaterorlessertothenakedeye,accordingastheobjectisseenbyraysmoreorlessdiverging,itfollowsthatamanmaymakeuseofthedivergencyoftheraysincomputingtheapparentdistance,thoughnotforitsownsake,yetonaccountoftheconfusionwithwhichitisconnected。But,soitis,theconfusionitselfisentirelyneglectedbymathematiciansashavingnonecessaryrelationwithdistance,suchasthegreaterorlesseranglesofdivergencyareconceivedtohave。

  Andthese(especiallyforthattheyfallundermathematicalcomputation)

  arealoneregardedindeterminingtheapparentplacesofobjects,asthoughtheywerethesoleandimmediatecauseofthejudgmentsthemindmakesofdistance。Whereas,intruth,theyshouldnotatallberegardedinthemselves,oranyotherwise,thanastheyaresupposedtobethecauseofconfusedvision。

  39。Thenotconsideringofthishasbeenafundamentalandperplexingoversight。Forproofwhereofweneedgonofartherthanthecasebeforeus。Ithavingbeenobservedthatthemostdivergingraysbroughtintothemindtheideaofnearestdistance,andthatstill,asthedivergencydecreased,thedistanceincreased:anditbeingthoughttheconnexionbetweenthevariousdegreesofdivergencyanddistancewasimmediate;thisnaturallyleadsonetoconclude,fromanill—groundedanalogy,thatconvergingraysshallmakeanobjectappearatanimmensedistance:andthat,astheconvergencyincreases,thedistance(ifitwerepossible)shoulddosolikewise。ThatthiswasthecauseofDr。Barrow’smistakeisevidentfromhisownwordswhichwehavequoted。Whereashadthelearneddoctorobservedthatdivergingandconvergingrays,howoppositesoevertheymayseem,doneverthelessagreeinproducingthesameeffect,towit,confusednessofvision,greaterdegreeswhereofareproducedindifferently,eitherasthedivergencyorconvergencyandtheraysincreaseth。Andthatitisbythiseffect,whichisthesameinboth,thateitherthedivergencyorconvergencyisperceivedbytheeye;Isay,hadhebutconsideredthis,itiscertainhewouldhavemadeaquitecontraryjudgment,andrightlyconcludedthatthoserayswhichfallontheeyewithgreaterdegreesofconvergencyshouldmaketheobjectfromwhencetheyproceedappearbysomuchthenearer。Butitisplainitwasimpossibleforanymantoattaintoarightnotionofthismattersolongashehadregardonlytolinesandangles,anddidnotapprehendthetruenatureofvision,andhowfaritwasofmathematicalconsideration。

  40。Beforewedismissthissubject,itisfitwetakenoticeofaqueryrelatingthereto,proposedbytheingeniousMr。Molyneux,ishisTreatiseofDioptrics,[2]wherespeakingofthisdifficulty,hehasthesewords:

  ’Andsohe(i。e。Dr。Barrow)leavesthisdifficultytothesolutionofothers,whichI(aftersogreatanexample)shalldolikewise;butwiththeresolutionofthesameadmirableauthorofnotquittingtheevidentdoarinewhichwehavebeforelaiddown,fordeterminingthelocusobjecti,onaccountofbeingpressedbyonedifficultywhichseemsinexplicabletillamoreintimateknowledgeofthevisivefacultybeobtainedbymortals。

  Inthemeantime,Iproposeittotheconsiderationoftheingenious,whetherthelocusapparensofanobjectplacedasinthis9thsectionbenotasmuchbeforetheeyeasthedistinctbaseisbehindtheeye!’Towhichquerywemayventuretoanswerinthenegative。Forinthepresentcasetherulefordeterminingthedistanceofthedistinctbase,orrespectivefocusfromtheglass,isthis:Asthedifferencebetweenthedistanceoftheobjectandfocusistothefocusorfocallength,sothedistanceoftheobjectfromtheglassistothedistanceoftherespectivefocusordistinctbasefromtheglass。[3]Letusnowsupposetheobjecttobeplacedatthedistanceofthefocallength,andonehalfofthefocallengthfromtheglass,andtheeyeclosetotheglass,henceitwillfollowbytherulethatthedistanceofthedistinctbasebehindtheeyeisdoublethetruedistanceoftheobjectbeforetheeye。IfthereforeMr。Molyneux’sconjectureheldgood,itwouldfollowthattheeyeshouldseetheobjecttwiceasfaroffasitreallyis;andinothercasesatthreeorfourtimesitsduedistance,ormore。Butthismanifestlycontradictsexperience,theobjectneverappearing,atfarthest,beyonditsduedistance。Whatever,therefore,isbuiltonthissupposition(vid。Corol。I。Prop。57,ibid。)comestothegroundalongwithit。

  41。Fromwhathathbeenpremiseditisamanifestconsequencethatamanbornblind,beingmadetosee,would,atfirst,havenoideaofdistancebysight;thesunandstars,theremotestobjectsaswellasthenearer,wouldallseemtobeinhiseye,orratherinhismind。Theobjectsintromittedbysightwouldseemtohim(asintruththeyare)nootherthananewsetofthoughtsorsensations,eachwhereofisasneartohimastheperceptionsofpainorpleasure,orthemostinwardpassionsofhissoul。Forourjudgingobjectsprovidedbysighttobeatanydistance,orwithoutthemind,is(vid。sect。28)entirelytheeffectofexperience,whichoneinthosecircumstancescouldnotyethaveattainedto。

  42。Itisindeedotherwiseuponthecommonsuppositionthatmenjudgeofdistancebytheangleoftheopticaxes,justasoneinthedark,orablind—manbytheanglecomprehendedbytwosticks,onewhereofheheldineachhand。Forifthisweretrue,itwouldfollowthatoneblindfromhisbirthbeingmadetosee,shouldstandinneedofnonewexperienceinordertoperceivedistancebysight。Butthatthisisfalsehas,Ithink,beensufficientlydemonstrated。

  43。Andperhapsuponastrictinquiryweshallnotfindthateventhosewhofromtheirbirthhavegrownupinacontinuedhabitofseeingareirrecoverablyprejudicedontheotherside,towit,inthinkingwhattheyseetobeatadistancefromthem。Foratthistimeitseemsagreedonallhands,bythosewhohavehadanythoughtsofthatmatter,thatcolours,whicharetheproperandimmediateobjectofsight,arenotwithoutthemind。Butthenitwillbesaid,bysightwehavealsotheideasofextension,andfigure,andmotion;allwhichmaywellbethoughtwithout,andatsomedistancefromthemind,thoughcolourshouldnot。InanswertothisIappealtoanyman’sexperience,whetherthevisibleextensionofanyobjectdothnotappearasneartohimasthecolourofthatobject;nay,whethertheydonotbothseemtobeintheverysameplace。Isnottheextensionweseecoloured,andisitpossibleforus,somuchasinthought,toseparateandabstractcolourfromextension?Now,wheretheextensionistheresurelyisthefigure,andtherethemotiontoo。Ispeakofthosewhichareperceivedbysight。

  44。Butforafullerexplicationofthispoint,andtoshewthattheimmediateobjectsofsightarenotsomuchastheideasorresemblancesofthingsplacedatadistance,itisrequisitethatwelooknearerintothematterandcarefullyobservewhatismeantincommondiscourse,whenonesaysthatwhichheseesisatadistancefromhim。Suppose,forexample,thatlookingatthemoonIshouldsayitwerefiftyorsixtysemidiametersoftheearthdistantfromme。Letusseewhatmoonthisisspokenof:itisplainitcannotbethevisiblemoon,oranythinglikethevisiblemoon,orthatwhichIsee,whichisonlyaround,luminousplaneofaboutthirtyvisiblepointsindiameter。ForincaseIamcarriedfromtheplacewhereIstanddirectlytowardsthemoon,itismanifesttheobjectvaries,stillasIgoon;andbythetimethatIamadvancedfiftyorsixtysemidiametersoftheearth,Ishallbesofarfrombeingnearasmall,round,luminousflatthatIshallperceivenothinglikeit;thisobjecthavinglongsincedisappeared,andifIwouldrecoverit,itmustbebygoingbacktotheearthfromwhenceIsetout。Again,supposeIperceivebysightthefaintandobscureideaofsomethingwhichIdoubtwhetheritbeaman,oratree,oratower,butjudgeittobeatthedistanceofaboutamile。ItisplainIcannotmeanthatwhatIseeisamileoff,orthatitistheimageorlikenessofanythingwhichisamileoff,sincethateverystepItaketowardsittheappearancealters,andfrombeingobscure,small,andfaint,growsclear,large,andvigorous。AndwhenIcometothemile’send,thatwhichIsawfirstisquitelost,neitherdoIfindanythinginthelikenessofit。

  45。Intheseandthelikeinstancesthetruthofthematterstandsthus:

  havingofalongtimeexperiencedcertainideas,perceivablebytouch,asdistance,tangiblefigure,andsolidity,tohavebeenconnectedwithcertainideasofsight,Idouponperceivingtheseideasofsightforthwithconcludewhattangibleideasare,bythewontedordinarycourseofNatureliketofollow。LookingatanobjectIperceiveacertainvisiblefigureandcolour,withsomedegreeoffaintnessandothercircumstances,whichfromwhatIhaveformerlyobserved,determinemetothinkthatifIadvanceforwardsomanypacesormiles,Ishallbeaffectedwithsuchandsuchideasoftouch:sothatintruthandstrictnessofspeechIneitherseedistanceitself,noranythingthatItaketobeatadistance。Isay,neitherdistancenorthingsplacedatadistancearethemselves,ortheirideas,trulyperceivedbysight。ThisIampersuadedof,astowhatconcernsmyself:

  andIbelievewhoeverwilllooknarrowlyintohisownthoughtsandexaminewhathemeansbysayingheseesthisorthatthingatadistance,willagreewithmethatwhatheseesonlysuggeststohisunderstandingthatafterhavingpassedacertaindistance,tobemeasuredbythemotionofhisbody,whichisperceivablebytouch,heshallcometoperceivesuchandsuchtangibleideaswhichhavebeenusuallyconnectedwithsuchandsuchvisibleideas。Butthatonemightbedeceivedbythesesuggestionsofsense,andthatthereisnonecessaryconnexionbetweenvisibleandtangibleideassuggestedbythem,weneedgonofartherthanthenextlooking—glassorpicturestobeconvinced。NotethatwhenIspeakoftangibleideas,Itakethewordideaforanytheimmediateobjectofsenseorunderstanding,inwhichlargesignificationitiscommonlyusedbythemoderns。

  46。Fromwhatwehaveshewnitisamanifestconsequencethattheideasofspace,outness,andthingsplacedatadistancearenot,strictlyspeaking,theobjectofsight;theyarenototherwiseperceivedbytheeyethanbytheear。SittinginmystudyIhearacoachdrivealongthestreet;Ilookthroughthecasementandseeit;Iwalkoutandenterintoit;thus,commonspeechwouldinclineonetothinkIheard,saw,andtouchedthesamething,towit,thecoach。Itisneverthelesscertain,theideasintromittedbyeachsensearewidelydifferentanddistinctfromeachother;buthavingbeenobservedconstantlytogotogether,theyarespokenofasoneandthesamething。BythevariationofthenoiseIperceivethedifferentdistancesofthecoach,andknowthatitapproachesbeforeIlookout。

  ThusbytheearIperceivedistance,justafterthesamemannerasIdobytheeye。

  47。IdonotneverthelesssayIheardistanceinlikemannerasIsaythatIseeit,theideasperceivedbyhearingnotbeingsoapttobeconfoundedwiththeideasoftouchasthoseofsightare。Solikewiseamaniseasilyconvincedthatbodiesandexternalthingsarenotproperlytheobjectofhearing;butonlysounds,bythemediationwhereoftheideaofthisorthatbodyordistanceissuggestedtohisthoughts。Butthenoneiswithmoredifficultybroughttodiscernthedifferencethereisbetwixttheideasofsightandtouch:thoughitbecertainamannomoreseesandfeelsthesamethingthanhehearsandfeelsthesamething。

  48。Onereasonofwhichseemstobethis。Itisthoughtagreatabsurditytoimaginethatoneandthesamethingshouldhaveanymorethanoneextension,andonefigure。Buttheextensionandfigureofabody,beingletintothemindtwoways,andthatindifferentlyeitherbysightortouch,itseemstofollowthatweseethesameextensionandthesamefigurewhichwefeel。

  49。Butifwetakeacloseandaccurateviewofthings,itmustbeacknowledgedthatweneverseeandfeeloneandthesameobject。Thatwhichisseenisonething,andthatwhichisfeltisanother。Ifthevisiblefigureandextensionbenotthesamewiththetangiblefigureandextension,wearenottoinferthatoneandthesamethinghasdiversextensions。Thetrueconsequenceisthattheobjectsofsightandtoucharetwodistinctthings。Itmayperhapsrequiresomethoughtrightlytoconceivethisdistinction。

  Andthedifficultyseemsnotalittleincreased,becausethecombinationofvisibleideashathconstantlythesamenameasthecombinationoftangibleideaswherewithitisconnected:whichdothofnecessityarisefromtheuseandendoflanguage。

  50。Inorderthereforetotreataccuratelyandunconfusedlyofvision,wemustbearinmindthattherearetwosortsofobjectsapprehendedbytheeye,theoneprimarilyandimmediately,theothersecondarilyandbyinterventionoftheformer。Thoseofthefirstsortneitherare,norappeartobe,withoutthemind,oratanydistanceoff;theymayindeedgrowgreaterorsmaller,moreconfused,ormoreclear,ormorefaint,buttheydonot,cannotapproachorrecedefromus。Wheneverwesayanobjectisatadistance,wheneverwesayitdrawsnear,orgoesfartheroff,wemustalwaysmeanitofthelattersort,whichproperlybelongtothetouch,andarenotsotrulyperceivedassuggestedbytheeyeinlikemannerasthoughtsbytheear。

  51。Nosoonerdowehearthewordsofafamiliarlanguagepronouncedinourears,buttheideascorrespondingtheretopresentthemselvestoourminds:intheverysameinstantthesoundandthemeaningentertheunderstanding:socloselyaretheyunitedthatitisnotinourpowertokeepouttheone,exceptweexcludetheotheralso。Weevenactinallrespectsasifweheardtheverythoughtsthemselves。Solikewisethesecondaryobjects,orthosewhichareonlysuggestedbysight,dooftenmorestronglyaffectus,andaremoreregardedthantheproperobjectsofthatsense;

  alongwithwhichtheyenterintothemind,andwithwhichtheyhaveafarmorestrictconnexion,thanideashavewithwords。Henceitiswefinditsodifficulttodiscriminatebetweentheimmediateandmediateobjectsofsight,andaresopronetoattributetotheformerwhatbelongsonlytothelatter。Theyare,asitwere,mostcloselytwisted,blended,andincorporatedtogether。Andtheprejudiceisconfirmedandrivetedinourthoughtsbyalongtractoftime,bytheuseoflanguage,andwantofreflexion。

  However,Ibelieveanyonethatshallattentivelyconsiderwhatwehavealreadysaid,andshallsay,uponthissubjectbeforewehavedone(especiallyifhepursueitinhisownthoughts)maybeabletodeliverhimselffromthatprejudice。SureIamitisworthsomeattention,towhoeverwouldunderstandthetruenatureofvision。

  52。Ihavenowdonewithdistance,andproceedtoshewhowitisthatweperceivebysightthemagnitudeofobjects。Itistheopinionofsomethatwedoitbyangles,orbyanglesinconjunctionwithdistance:butneitheranglesnordistancebeingperceivablebysight,andthethingsweseebeingintruthatnodistancefromus,itfollowsthataswehaveshewnlinesandanglesnottobethemediumthemindmakesuseofinapprehendingtheapparentplace,soneitheraretheythemediumwherebyitapprehendstheapparentmagnitudeofobjects。

  53。Itiswellknownthatthesameextensionataneardistanceshallsubtendagreaterangle,andatafartherdistancealesserangle。Andbythisprinciple(wearetold)themindestimatesthemagnitudeofanobject,comparingtheangleunderwhichitisseenwithitsdistance,andthenceinferringthemagnitudethereof。Whatinclinesmentothismistake(besidethehumourofmakingoneseebygeometry)isthatthesameperceptionsorideaswhichsuggestdistancedoalsosuggestmagnitude。Butifweexamineitweshallfindtheysuggestthelatterasimmediatelyastheformer。

  Isay,theydonotfirstsuggestdistance,andthenleaveittothejudgmenttousethatasamediumwherebytocollectthemagnitude;buttheyhaveascloseandimmediateaconnexionwiththemagnitudeaswiththedistance;

  andsuggestmagnitudeasindependentlyofdistanceastheydodistanceindependentlyofmagnitude。Allwhichwillbeevidenttowhoeverconsiderswhathathbeenalreadysaid,andwhatfollows。

  54。Ithathbeenshewntherearetwosortsofobjectsapprehendedbysight;eachwhereofhathitsdistinctmagnitude,orextension。Theone,properlytangible,i。e。tobeperceivedandmeasuredbytouch,andnotimmediatelyfallingunderthesenseofseeing:theother,properlyandimmediatelyvisible,bymediationofwhichtheformerisbroughtinview。Eachofthesemagnitudesaregreaterorlesser,accordingastheycontaininthemmoreorfewerpoints,theybeingmadeupofpointsorminimums。

  For,whatevermaybesaidofextensioninabtract,itiscertainsensibleextensionisnotinfinitelydivisible。ThereisaMinimumTangibileandaMinimumVisibile,beyondwhichsensecannotperceive。

  Thiseveryone’sexperiencewillinformhim。

  55。Themagnitudeoftheobjectwhichexistswithoutthemind,andisatadistance,continuesalwaysinvariablythesame:butthevisibleobjectstillchangingasyouapproachto,orrecedefrom,thetangibleobject,ithathnofixedanddeterminategreatness。Whenever,therefore,wespeakofthemagnitudeofanything,forinstanceatreeorahouse,wemustmeanthetangiblemagnitude,otherwisetherecanbenothingsteadyandfreefromambiguityspokenofit。Butthoughthetangibleandvisiblemagnitudeintruthbelongtotwodistinctobjects:Ishallnevertheless(especiallysincethoseobjectsarecalledbythesamename,andareobservedtocoexist),toavoidtediousnessandsingularityofspeech,sometimesspeakofthemasbelongingtooneandthesamething。

  56。Nowinordertodiscoverbywhatmeansthemagnitudeoftangibleobjectsisperceivedbysight。Ineedonlyreflectonwhatpassesinmyownmind,andobservewhatthosethingsbewhichintroducetheideasofgreaterorlesserintomythoughts,whenIlookonanyobject。AndtheseIfindtobe,first,themagnitudeorextensionofthevisibleobject,whichbeingimmediatelyperceivedbysight,isconnectedwiththatotherwhichistangibleandplacedatadistance。Secondly,theconfusionordistinctness。Andthirdly,thevigorousnessorfaintnessoftheaforesaidvisibleappearance。Ceterisparibus,byhowmuchthegreaterorlesserthevisibleobjectis,bysomuchthegreaterorlesserdoI

  concludethetangibleobjecttobe。But,betheideaimmediatelyperceivedbysightneversolarge,yetifitbewithalconfused,Ijudgethemagnitudeofthethingtobebutsmall。Ifitbedistinctandclear,Ijudgeitgreater。

  Andifitbefaint,Iapprehendittobeyetgreater。Whatisheremeantbyconfusionandfaintnesshathbeenexplainedinsect。35。

  57。Moreoverthejudgmentswemakeofgreatnessdo,inlikemannerasthoseofdistance,dependonthedispositionoftheeye,alsoonthefigure,number,andsituationofobjectsandothercircumstancesthathavebeenobservedtoattendgreatorsmalltangiblemagnitudes。Thus,forinstance,theverysamequantityofvisibleextension,whichinthefigureofatowerdothsuggesttheideaofgreatmagnitude,shallinthefigureofamansuggesttheideaofmuchsmallermagnitude。Thatthisisowingtotheexperiencewehavehadoftheusualbignessofatowerandamannoone,Isuppose,needbetold。

  58。Itisalsoevidentthatconfusionorfaintnesshavenomoreanecessaryconnexionwithlittleorgreatmagnitudethantheyhavewithlittleorgreatdistance。Astheysuggestthelatter,sotheysuggesttheformertoourminds。Andbyconsequence,ifitwerenotforexperience,weshouldnomorejudgeafaintorconfusedappearancetobeconnectedwithgreatorlittlemagnitude,thanweshouldthatitwasconnectedwithgreatorlittledistance。

  59。Norwillitbefoundthatgreatorsmallvisiblemagnitudehathanynecessaryrelationtogreatorsmalltangiblemagnitude:sothattheonemaycertainlybeinferredfromtheother。Butbeforewecometotheproofofthis,itisfitweconsiderthedifferencethereisbetwixttheextensionandfigurewhichistheproperobjectoftouch,andthatotherwhichistermedvisible;andhowtheformerisprincipally,thoughnotimmediatelytakennoticeof,whenwelookatanyobject。Thishasbeenbeforementioned,butweshallhereinquireintothecausethereof。Weregardtheobjectsthatenvironusinproportionastheyareadaptedtobenefitorinjureourownbodies,andtherebyproduceinourmindsthesensationofpleasureorpain。Nowbodiesoperatingonourorgans,byanimmediateapplication,andthehurtoradvantagearisingtherefrom,dependingaltogetheronthetangible,andnotatallonthevisible,qualitiesofanyobject:thisisaplainreasonwhythoseshouldberegardedbyusmuchmorethanthese:andforthisendthevisivesenseseemstohavebeenbestowedonanimals,towit,thatbytheperceptionofvisibleideas(whichinthemselvesarenotcapableofaffectingoranywisealteringtheframeoftheirbodies)

  theymaybeabletoforesee(fromtheexperiencetheyhavehadwhattangibleideasareconnectedwithsuchandsuchvisibleideas)anddamageorbenefitwhichisliketoensue,upontheapplicationoftheirownbodiestothisorthatbodywhichisatadistance。Whichforesight,hownecessaryitistothepreservationofananimal,everyone’sexperiencecaninformhim。

  Henceitisthatwhenwelookatanobject,thetangiblefigureandextensionthereofareprincipallyattendedto;whilstthereissmallheedtakenofthevisiblefigureandmagnitude,which,thoughmoreimmediatelyperceived,dolessconcernus,andarenotfittedtoproduceanyalterationinourbodies。

  60。Thatthematteroffactistruewillbeevidenttoanyonewhoconsidersthatamanplacedattenfootdistanceisthoughtasgreatasifhewereplacedatadistanceonlyoffivefoot:whichistruenotwithrelationtothevisible,buttangiblegreatnessoftheobject:thevisiblemagnitudebeingfargreateratonestation:thanitisattheother。

  61。Inches,feet,etc。,aresettledstatedlengthswherebywemeasureobjectsandestimatetheirmagnitude:wesay,forexample,anobjectappearstobesixinchesorsixfootlong。Now,thatthiscannotbemeantofvisibleinches,etc。,isevident,becauseavisibleinchisitselfnoconstant,determinatemagnitude,andcannotthereforeservetomarkoutanddeterminethemagnitudeofanyotherthing。Takeaninchmarkeduponaruler:viewit,successively,atthedistanceofhalfafoot,afoot,afootandahalf,etc。,fromtheeye:ateachofwhich,andatalltheintermediatedistances,theinchshallhaveadifferentvisibleextension,i。e。thereshallbemoreorfewerpointsdiscernedinit。NowIaskwhichofallthesevariousextensionsisthatstated,determinateonethatisagreedonforacommonmeasureofothermagnitudes?Noreasoncanbeassignedwhyweshouldpitchononemorethananother:andexcepttherebesomeinvariable,determinateextensionfixedontobemarkedt~thewordinch,itisplainitcanbeusedtolittlepurpose;andtosayathingcontainsthisorthatnumberofinchesshallimplynomorethanthatitisextended,withoutbringinganyparticularideaofthatextensionintothemind。Farther,aninchandafoot,fromdifferentdistances,shallbothexhibitthesamevisiblemagnitude,andyetatthesametimeyoushallsaythatoneseemsseveraltimesgreaterthantheother。Fromallwhichitismanifestthatthejudgmentswemakeofthemagnitudeofobjectsbysightarealtogetherinreferencetotheirtangibleextension。Wheneverwesayanobjectisgreat,orsmall,ofthisorthatdeterminatemeasure,Isayitmustbemeantofthetangible,andnotthevisibleextension,which,thoughimmediatelyperceived,isneverthelesslittletakennoticeof。

  62。Now,thatthereisnonecessaryconnexionbetweenthesetwodistinctextensionsisevidentfromhence:becauseoureyesmighthavebeenframedinsuchamannerastobeabletoseenothingbutwhatwerelessthantheminimumtangibile。Inwhichcaseitisnotimpossiblewemighthaveperceivedalltheimmediateobjectsofsight,theverysamethatwedonow:butuntothosevisibleappearancestherewouldnotbeconnectedthosedifferenttangiblemagnitudesthatarenow。Whichshewsthejudgmentswemakeofthcmagnitudeofthingsplacedatadistancefromthevariousgreatnessoftheimmediateobjectsofsightdonotarisefromanyessentialornecessarybutonlyacustomarytie,whichhasbeenobservedbetweenthem。

  63。Moreover,itisnotonlycertainthatanyideaofsightmightnothavebeenconnectedwiththisorthatideaoftouch,whichwenowobservetoaccompanyit:butalsothatthegreatervisiblemagnitudesmighthavebeenconnectedwith,andintroducedintoourmindslessertangiblemagnitudesandthelesservisiblemagnitudesgreatertangiblemagnitudes。Nay,thatitactuallyissowehavedailyexperience;thatobjectwhichmakesastrongandlargeappearance,notseemingnearsogreatasanother,thevisiblemagnitudewhereofismuchless,butmorefaint,andtheappearanceupper,orwhichisthesamethingpaintedlowerontheretina,whichfaintnessandsituationsuggestbothgreatermagnitudeandgreaterdistance。

  64。Fromwhich,andfromsect。57and58,itismanifestthataswedonotperceivethemagnitudesofobjectsimmediatelybysight,soneitherdoweperceivethembythemediationofanythingwhichhasanecessaryconnexionwiththem。Thoseideasthatnowsuggestuntousthevariousmagnitudesofexternalobjectsbeforewetouchthem,mightpossiblyhavesuggestednosuchthing:ortheymighthavesignifiedtheminadirectcontrarymanner:

  sothattheverysameideas,ontheperceptionwhereofwejudgeanobjecttobesmall,mightaswellhaveservedtomakeusconcludeitgreat。Thoseideasbeingintheirownnatureequallyfittedtobringintoourmindstheideaofsmallorgreat,ornosizeatallofoutwardobjects;justasthewordsofanylanguageareintheirownnatureindifferenttosignifythisorthatthingornothingatall。

  65。Asweseedistance,soweseemagnitude。Andweseebothinthesamewaythatweseeshameorangerinthelooksofaman。Thosepassionsarethemselvesinvisible,theyareneverthelessletinbytheeyealongwithcoloursandalterationsofcountenance,whicharetheimmediateobjectofvision:andwhichsignifythemfornootherreasonthanbarelybecausetheyhavebeenobservedtoaccompanythem。Withoutwhichexperienceweshouldnomorehavetakenblushingforasignofshamethanofgladness。

  66。Weareneverthelessexceedingpronetoimaginethosethingswhichareperceivedonlybythemediationofotherstobethemselvestheimmediateobjectsofsight;or,atleast,tohaveintheirownnatureafitnesstobesuggestedbythem,beforeevertheyhadbeenexperiencedtocoexistwiththem。Fromwhichprejudiceeveryone,perhaps,willnotfinditeasytoemancipatehimself,byany[but]theclearestconvictionsofreason。

  Andtherearesomegroundstothinkthatiftherewasoneonlyinvariableanduniversallanguagesintheworld,andthatmenwerebornwiththefacultyofspeakingit,itwouldbetheopinionofmanythattheideasofothermen’smindswereproperlyperceivedbytheear,orhadatleastanecessaryandinseparabletiewiththesoundsthatwereaffixedtothem。Allwhichseemstoarisefromwantofadueapplicationofourdiscerningfaculty,therebytodiscriminatebetweentheideasthatareinourunderstandings,andconsiderthemapartfromeachother;whichwouldpreserveusfromconfoundingthosethataredifferent,andmakeusseewhatideasdo,andwhatdonotincludeorimplythisorthatotheridea。

  67。Thereisacelebratedphenomenon,thesolutionwhereofIshallattempttogivebytheprinciplesthathavebeenlaiddown,inreferencetothemannerwhereinweapprehendbysightthemagnitudeofobjects。Theapparentmagnitudeofthemoonwhenplacedinthehorizonismuchgreaterthanwhenitisinthemeridian,thoughtheangleunderwhichthediameterofthemoonisseenbenotobservedgreaterintheformercasethaninthelatter:

  andthehorizontalmoondothnotconstantlyappearofthesamebigness,butatsometimesseemethfargreaterthanatothers。

  68。Nowinordertoexplainthereasonofthemoon’sappearinggreaterthanordinaryinthehorizon,itmustbeobservedthattheparticleswhichcomposeouratmosphereintercepttheraysoflightproceedingfromanyobjecttotheeye;andbyhowmuchthegreateristheportionofatmosphereinterjacentbetweentheobjectandtheeye,bysomuchthemorearetheraysintercepted;andbyconsequencetheappearanceoftheobjectrenderedmorefaint,everyobjectappearingmorevigorousormorefaintinproportionasitsendethmoreorfewerraysintotheeye。Nowbetweentheeyeandthemoon,whensituatedinthehorizon,thereliesafargreaterquantityofatmospherethantheredoeswhenthemoonisinthemeridian。Whenceitcomestopassthattheappearanceofthehorizontalmoonisfainter,andthereforebysect。56itshouldbethoughtbiggerinthatsituationthaninthemeridian,orinanyotherelevationabovethehorizon。

点击下载App,搜索"An Essay Towards a New Theory of Vision",免费读到尾