1。Mydesignistoshewthemannerwhereinweperceivebysightthedistance,magnitude,andsituationofobjects。Alsotoconsiderthedifferencethereisbetwixttheideasofsightandtouch,andwhethertherebeanyideacommontobothsenses。
2。Itis,Ithink,agreedbyallthatdistance,ofitselfandimmediately,cannotbeseen。FordistancebeingaLinedirectedend—wisetotheeye,itprojectsonlyonepointinthefundoftheeye,whichpointremainsinvariablythesame,whetherthedistancebelongerorshorter。
3。Ifinditalsoacknowledgedthattheestimatewemakeofthedistanceofobjectsconsiderablyremoteisratheranactofjudgmentgroundedonexperiencethanofsense。Forexample,whenIperceiveagreatnumberofintermediateobjects,suchashouses,fields,rivers,andthelike,whichIhaveexperiencedtotakeupaconsiderablespace,IthenceformajudgmentorconclusionthattheobjectIseebeyondthemisatagreatdistance。
Again,whenanobjectappearsfaintandsmall,whichataneardistanceIhaveexperiencedtomakeavigorousandlargeappearance,Iinstantlyconcludeittobefaroff:Andthis,’tisevident,istheresultofexperience;
withoutwhich,fromthefaintnessandlittlenessIshouldnothaveinferredanythingconcerningthedistanceofobjects。
4。Butwhenanobjectisplacedatsonearadistanceasthattheintervalbetweentheeyesbearsanysensibleproportiontoit,theopinionofspeculativemenisthatthetwoopticaxes(thefancythatweseeonlywithoneeyeatoncebeingexploded)concurringattheobjectdotheremakeanangle,bymeansofwhich,accordingasitisgreaterorlesser,theobjectisperceivedtobenearerorfartheroff。[1]
5。Betwixtwhichandtheforegoingmannerofestimatingdistancethereisthisremarkabledifference:thatwhereastherewasnoapparent,necessaryconnexionbetweensmalldistanceandalargeandstrongappearance,orbetweengreatdistanceandalittleandfaintappearance,thereappearsaverynecessaryconnexionbetweenanobtuseangleandneardistance,andanacuteangleandfartherdistance。Itdoesnotintheleastdependuponexperience,butmaybeevidentlyknownbyanyonebeforehehadexperiencedit,thatthenearertheconcurrenceoftheopticaxes,thegreatertheangle,andtheremotertheirconcurrenceis,thelesserwillbetheanglecomprehendedbythem。
6。Thereisanotherwaymentionedbyopticwriters,wherebytheywillhaveusjudgeofthosedistances,inrespectofwhichthebreadthofthepupilhathanysensiblebigness:Andthatisthegreaterorlesserdivergencyoftherays,whichissuingfromthevisiblepointdofallonthepupil,thatpointbeingjudgednearestwhichisseenbymostdivergingrays,andthatremoterwhichisseenbylessdivergingrays:andsoon,theapparentdistancestillincreasing,asthedivergencyoftheraysdecreases,tillatlengthitbecomesinfinite,whentheraysthatfallonthepupilaretosenseparallel。Andafterthismanneritissaidweperceivedistancewhenwelookonlywithoneeye。
7。Inthiscasealsoitisplainwearenotbeholdingtoexperience:
itbeingacertain,necessarytruththatthenearerthedirectraysfallingontheeyeapproachtoaparallelism,thefartheroffisthepointoftheirintersection,orthevisiblepointfromwhencetheyflow。
8。Nowthoughtheaccountsheregivenofperceivingneardistancebysightarereceivedfortrue,andaccordinglymadeuseofindeterminingtheapparentplacesofobjects,theydoneverthelessseemveryunsatisfactory:
andthatforthesefollowingreasons。
9。Itisevidentthatwhenthemindperceivesanyidea,notimmediatelyandofitself,itmustbebythemeansofsomeotheridea。Thus,forinstance,thepassionswhichareinthemindofanotherareofthemselvestomeinvisible。
Imayneverthelessperceivethembysight,thoughnotimmediately,yetbymeansofthecolourstheyproduceinthecountenance。Weoftenseeshameorfearinthelooksofaman,byperceivingthechangesofhiscountenancetoredorpale。
10。Moreoveritisevidentthatnoideawhichisnotitselfperceivedcanbethemeansofperceivinganyotheridea。IfIdonotperceivetherednessorpalenessofaman’sfacethemselves,itisimpossibleIshouldperceivebythemthepassionswhichareinhismind。
11。Nowfromsect。2itisplainthatdistanceisinitsownnatureimperceptible,andyetitisperceivedbysight。Itremains,therefore,thatitbebroughtintoviewbymeansofsomeotherideathatisitselfimmediatelyperceivedintheactofvision。
I2。Butthoselinesandangles,bymeanswhereofsomemenpretendtoexplaintheperceptionofdistance,arethemselvesnotatallperceived,noraretheyintrutheverthoughtofbythoseunskilfulinoptics。Iappealtoanyone’sexperiencewhetheruponsightofanobjecthecomputesitsdistancebythebignessoftheanglemadebythemeetingofthetwoopticaxes?Orwhetherheeverthinksofthegreaterorlesserdivergencyoftherays,whicharrivefromanypointtohispupil?Everyoneishimselfthebestjudgeofwhatheperceives,andwhatnot。invainshallanymantellmevariousideasofdistance,solongasImyselfamconsciousofnosuchthing。
13。Since,therefore,thoseanglesandlinesarenotthemselvesperceivedbysight,itfollowsfromsect。10thattheminddothnotbythemjudgeofthedistanceofobjects。
14。Thetruthofthisassertionwillbeyetfartherevidenttoanyonethatconsidersthoselinesandangleshavenorealexistenceinnature,beingonlyanhypothesisframedbythemathematicians,andbythemintroducedintooptics,thattheymighttreatofthatscienceinageometricalway。
15。ThelastreasonIshallgiveforrejectingthatdoctrineis,thatthoughweshouldgranttherealexistenceofthoseopticangles,etc。,andthatitwaspossibleforthemindtoperceivethem,yettheseprincipleswouldnotbefoundsufficienttoexplainthephenomenaofdistance,asshallbeshewnhereafter。
16。Now,itbeingalreadyshewnthatdistanceissuggestedtothemindbythemediationofsomeotherideawhichisitselfperceivedintheactofseeing,itremainsthatweinquirewhatideasorsensationstherebethatattendvision,untowhichwemaysupposetheideasofdistanceareconnected,andbywhichtheyareintroducedintothemind。Andfirst,itiscertainbyexperiencethatwhenwelookatanearobjectwithbotheyes,accordingasitapproachesorrecedesfromus,wealterthedispositionofoureyes,bylesseningorwideningtheintervalbetweenthepupils。Thisdispositionorturnoftheeyesisattendedwithasensation,whichseemstometobethatwhichinthiscasebringstheideaofgreaterorlesserdistanceintothemind。
17。Notthatthereisanynaturalornecessaryconnexionbetweenthesensationweperceivebytheturnoftheeyesandgreaterorlesserdistance,butbecausethemindhasbyconstantexperiencefoundthedifferentsensationscorrespondingtothedifferentdispositionsoftheeyestobeattendedeachwithadifferentdegreeofdistanceintheobject,therehasgrownanhabitualorcustomaryconnexionbetweenthosetwosortsofideas,sothatthemindnosoonerperceivesthesensationarisingfromthedifferentturnitgivestheeyes,Inordertobringthepupilsnearerorfartherasunder,butitwithalperceivesthedifferentideaofdistancewhichwaswonttobeconnectedwiththatsensation;justasuponhearingacertainsound,theideaisimmediatelysuggestedtotheunderstandingwhichcustomhadunitedwithit。
18NordoIseehowIcaneasilybemistakeninthismatter。Iknowevidentlythatdistanceisnotperceivedofitself。Thatbyconsequenceitmustbeperceivedbymeansofsomeotherideawhichisimmediatelyperceived,andvarieswiththedifferentdegreesofdistance。Iknowalsothatthesensationarisingfromtheturnoftheeyesisofitselfimmediatelyperceived,andvariousdegreesthereofareconnectedwithdifferentdistances,whichneverfailtoaccompanythemintomymind,whenIviewanobjectdistinctlywithbotheyes,whosedistanceissosmallthatinrespectofittheintervalbetweentheeyeshasanyconsiderablemagnitude。
19。Iknowitisareceivedopinionthatbyalteringthedispositionoftheeyesthemindperceiveswhethertheangleoftheopticaxesorthelateralanglescomprehendedbetweentheintervaloftheeyesandtheopticaxesaremadegreaterorlesser;andthataccordinglybyakindofnaturalgeometryitjudgesthepointoftheirintersectiontobenearerorfartheroff。ButthatthisisnottrueIamconvincedbymyownexperience,sinceIamnotconsciousthatImakeanysuchuseoftheperceptionIhavebytheturnofmyeyes。Andformetomakethosejudgments,anddrawthoseconclusionsfromit,withoutknowingthatIdoso,seemsaltogetherincomprehensible。
20。Fromallwhichitfollowsthatthejudgmentwemakeofthedistanceofanobject,viewedwithbotheyes,isentirelytheresultofexperience。
Ifwehadnotconstantlyfoundcertainsensationsarisingfromthevariousdispositionoftheeyes,attendedwithcertaindegreesofdistance,weshouldnevermakethosesuddenjudgmentsfromthemconcerningthedistanceofobjects;nomorethanwewouldpretendtojudgeaman’sthoughtsbyhispronouncingwordswehadneverheardbefore。
21。Secondly,anobjectplacedatacertaindistancefromtheeye,towhichthebreadthofthepupilbearsaconsiderableproportion,beingmadetoapproach,isseenmoreconfusedly:andtheneareritisbroughtthemoreconfusedappearanceitmakes。Andthisbeingfoundconstantlytobeso,therearisethinthemindanhabitualconnexionbetweentheseveraldegreesofconfusionanddistance;thegreaterconfusionstillimplyingthelesserdistance,andthelesserconfusionthegreaterdistanceoftheobject。
22。Thisconfusedappearanceoftheobjectdoththereforeseemtobethemediumwherebythemindjudgethofdistanceinthosecaseswhereinthemostapprovedwritersofopticswillhaveitjudgebythedifferentdivergencywithwhichtheraysflowingfromtheradiatingpointfallonthepupil。Noman,Ibelieve,willpretendtoseeorfeelthoseimaginaryanglesthattheraysaresupposedtoformaccordingtotheirvariousinclinationsonhiseye。Buthecannotchooseseeingwhethertheobjectappearmoreorlessconfused。Itisthereforeamanifestconsequencefromwhatbathbeendemonstrated,thatinsteadofthegreaterorlesser—divergencyoftherays,themindmakesuseofthegreaterorlesserconfusednessoftheappearance,therebytodeterminetheapparentplaceofanobject。
23Nordothitavailtosaythereisnotanynecessaryconnexionbetweenconfusedvisionanddistance,greatorsmall。ForIaskanymanwhatnecessaryconnexionheseesbetweentherednessofablushandshame?Andyetnosoonershallhebeholdthatcolourtoariseinthefaceofanother,butitbringsintohisandtheideaofthatpassionwhichhathbeenobservedtoaccompanyit。
24。Whatseemstohavemisledthewritersofopticsinthismatteristhattheyimaginemenjudgeofdistanceastheydoofaconclusioninmathematics,betwixtwhichandthepremisesitisindeedabsolutelyrequisitetherebeanapparent,necessaryconnexion:butitisfarotherwiseinthesuddenjudgmentsmenmakeofdistance。Wearenottothinkthatbrutesandchildren,orevengrownreasonablemen,whenevertheyperceiveanobjecttoapproach,ordepartfromthem,doitbyvirtueofgeometryanddemonstration。
25。Thatoneideamaysuggestanothertotheminditwillsufficethattheyhavebeenobservedtogotogether,withoutanydemonstrationofthenecessityoftheircoexistence,orwithoutsomuchasknowingwhatitisthatmakesthemsotocoexist。Ofthisthereareinnumerableinstancesofwhichnoonecanbeignorant。
26。Thus,greaterconfusionhavingbeenconstantlyattendedwithnearerdistance,nosooneristheformerideaperceived,butitsuggeststhelattertoourthoughts。AndifithadbeentheordinarycourseofNaturethatthefartheroffanobjectwereplaced,themoreconfuseditshouldappear,itiscertaintheverysameperceptionthatnowmakesusthinkanobjectapproacheswouldthenhavemadeustoimagineitwentfartheroff。Thatperception,abstractingfromcustomandexperience,beingequallyfittedtoproducetheideaofgreatdistance,orsmalldistance,ornodistanceatall。
27。Thirdly,anobjectbeingplacedatthedistanceabovespecified,andbroughtnearertotheeye,wemayneverthelessprevent,atleastforsometime,theappearancesgrowingmoreconfused,bystrainingtheeye。
Inwhichcasethatsensationsuppliestheplaceofconfusedvisioninaidingthemindtojudgeofthedistanceoftheobject;itbeingesteemedsomuchthenearerbyhowmuchtheeffortorstrainingoftheeyeinordertodistinctvisionisgreater。
28。Ihaveheresetdownthosesensationsorideasthatseemtobetheconstantandgeneraloccasionsofintroducingintothemindthedifferentideasofneardistance。Itistrueinmostcasesthatdiversothercircumstancescontributetoframeourideaofdistance,towit,theparticularnumber,size,kind,etc。,ofthethingsseen。Concerningwhich,aswellasallothertheforementionedoccasionswhichsuggestdistance,Ishallonlyobservetheyhavenoneofthem,intheirownnature,anyrelationorconnexionwithit:norisitpossibletheyshouldeversignifythevariousdegreesthereof,otherwisethanasbyexperiencetheyhavebeenfoundtobeconnectedwiththem。
29。Ishallproceedupontheseprinciplestoaccountforaphenomenonwhichhashithertostrangelypuzzledthewritersofoptics,andissofarfrombeingaccountedforbyanyoftheirtheoriesofvisionthatitis,bytheirownconfession,plainlyrepugnanttothem;andofconsequence,ifnothingelsecouldbeobjected,werealonesufficienttobringtheircreditinquestion。ThewholedifficultyIshalllaybeforeyouinthewordsofthelearnedDr。Barrow,withwhichheconcludeshisopticlectures。
’Ihaveheredeliveredwhatmythoughtshavesuggestedtomeconcerningthatpartofopticswhichismoreproperlymathematical。Asfortheotherpartsofthatscience(whichbeingratherphysical,doconsequentlyaboundwithplausibleconjecturesinsteadofcertainprinciples),therehasinthemscarceanythingoccur’dtomyobservationdifferentfromwhathasbeenalreadysaidbyKepler,Scheinerus,Descartes,andothers。Andmethinks,Ihadbettersaynothingatall),thanrepeatthatwhichhasbeensooftensaidbyothers。Ithinkitthereforehightimetotakemyleaveofthissubject:butbeforeIquititforgoodandall,thefairandingenuousdealingthatIowebothtoyouandtotruthobligethmetoacquaintyouwithacertainuntowarddifficulty,whichseemsdirectlyoppositetothedoctrineIhavebeenhithertoinculcating,atleast,admitsofnosolutionfromit。Inshortitisthis。BeforethedoubleconvexglassorconcavespeculumEBF,letthepointAbeplacedatsuchadistancethattheraysproceedingfromA,afterrefractionorreflexion,bebroughttounitesomewhereintheAxAB。Andsupposethepointofunion(i。e。theimageofthepointA,ashathbeenalreadysetforth)tobeZ;betweenwhichandB,thevertexoftheglassorspeculum,conceivetheeyetobeanywhereplaced。Thequestionnowis,wherethepointAoughttoappear?ExperienceshewsthatitdoesnotappearbehindatthepointZ,anditwerecontrarytonaturethatitshould,sincealltheimpressionwhichaffectsthesensecomesfromtowardsA。Butfromourtenetsitshouldseemtofollowthatitwouldappearbeforetheeyeatavastdistanceoff,sogreatasshouldinsomesortsurpassallsensibledistance。Forsinceifweexcludeallanticipationsandprejudices,everyobjectappearsbysomuchthefartheroff,byhowmuchtheraysitsendstotheeyearelessdiverging。Andthatobjectisthoughttobemostremotefromwhichparallelraysproceeduntotheeye。Reasonwouldmakeonethinkthatobjectshouldappearatyetagreaterdistancewhichisseenbyconvergingrays。MoreoveritmayingeneralbeaskedconcerningthiscasewhatitisthatdeterminestheapparentplaceofthepointA,andmakethittoappearafteraconstantmannersometimesnearer,atothertimesfartheroff?TowhichdoubtIseenothingthatcanbeansweredagreeabletotheprincipleswehavelaiddownexceptonlythatthepointAoughtalwaystoappearextremelyremote。ButonthecontraryweareassuredbyexperiencethatthepointAappearsvariouslydistant,accordingtothedifferentsituationsoftheeyebetweenthepointsBandZ。Andthatitdothnever(ifatall)seemfartheroff,thanitwouldifitwerebeheldbythenakedeye,butonthecontraryitdothsometimesappearmuchnearer。
Nay,itisevencertainthatbyhowmuchtheraysfallingontheeyedomoreconvergebysomuchthenearerdoththeobjectseemtoapproach。FortheeyebeingplacedclosetothepointB,theobjectAappearsnearlyinitsownnaturalplace,ifthepointBistakenintheglass,oratthesamedistance,ifinthespeculum。TheeyebeingbroughtbacktoO,theobjectseemstodrawnear:andbeingcometoPitbeholdsitstillnearer。
Andsoonlittleandlittle,tillatlengththeeyebeingplacedsomewhere,supposeatQ,theobjectappearingextremelynear,beginstovanishintomereconfusion。Allwhichdothseemrepugnanttoourprinciples,atleastnotrightlytoagreewiththem。Norisourtenetalonestruckatbythisexperiment,butlikewiseallothersthatevercametomyknowledgeare,everywhitasmuch,endangeredbyit。Theancientoneespecially(whichismostcommonlyreceived,andcomesnearesttomine)seemstobesoeffectuallyoverthrowntherebythatthemostlearnedTacquethasbeenforcedtorejectthatprinciple,asfalseanduncertain,onwhichalonehehadbuiltalmosthiswholeCatoptrics;andconsequentlybytakingawaythefoundation,hathhimselfpulleddownthesuperstructurehehadraisedonit。Which,nevertheless,Idonotbelievehewouldhavedonehadhebutconsideredthewholemattermorethoroughly,andexaminedthedifficultytothebottom。
Butasforme,neitherthisnoranyotherdifficultyshallhavesogreataninfluenceonmeastomakemerenouncethatwhichIknowtobemanifestlyagreeabletoreason:especiallywhen,asitherefallsout,thedifficultyisfoundedinthepeculiarnatureofacertainoddandparticularcase。
Forinthepresentcasesomethingpeculiarlieshid,whichbeinginvolvedinthesubtiltyofnaturewill,perhaps,hardlybediscoveredtillsuchtimeasthemannerofvisionismoreperfectlymadeknown。Concerningwhich,Imustown,Ihavehithertobeenabletofindoutnothingthathastheleastshewofprobability,nottomentioncertainty。Ishall,therefore,leavethisknottobeuntiedbyyou,wishingyoumayhavebettersuccessinitthanIhavehad。’
30。Theancientandreceivedprinciple,whichDr。BarrowherementionsasthemainfoundationofTacquet’sCatoptrics,isthat:everyvisiblepointseenbyreflexionfromaspeculumshallappearplacedattheintersectionofthereflectedray,andtheperpendicularofincidence。Whichintersectioninthepresentcase,happeningtobebehindtheeye,itgreatlyshakestheauthorityofthatprinciple,whereontheaforementionedauthorproceedsthroughouthiswholeCatoptricsindeterminingtheapparentplaceofobjectsseenbyreflexionfromanykindofspeculum。
31。Letusnowseehowthisphenomenonagreeswithourtenets。TheeyetheneareritisplacedtothepointBintheforegoingfigures,themoredistinctistheappearanceoftheobject;butasitrecedestoOtheappearancegrowsmoreconfused;andatPitseestheobjectyetmoreconfused;andsoontilltheeyebeingbroughtbacktoZseestheobjectinthegreatestconfusionofall。Whereforebysect。21theobjectshouldseemtoapproachtheeyegraduallyasitrecedesfromthepointB,thatis,atOitshould(inconsequenceoftheprincipleIhavelaiddownintheaforesaidsection)
seemnearerthanitdidatB,andatPnearerthanat0,andatQnearerthanatP;andsoon,tillitquitevanishesatZ。Whichistheverymatteroffact,asanyonethatpleasesmayeasilysatisfyhimselfbyexperiment。
32。ThiscaseismuchthesameasifweshouldsupposeanEnglishmantomeetaforeignerwhousedthesamewordswiththeEnglish,butinadirectcontrarysignification。TheEnglishmanwouldnotfailtomakeawrongjudgmentoftheideasannexedtothosesoundsinthemindofhimthatusedthem。Justso,inthepresentcasetheobjectspeaks(ifImaysosay)withwordsthattheeyeiswellacquaintedwith,thatis,confusionsofappearance;butwhereasheretoforethegreaterconfusionswerealwayswonttosignifynearerdistances,theyhaveinthiscaseadirect,contrarysignification,beingconnectedwiththegreaterdistances。Whenceitfollowsthattheeyemustunavoidablybemistaken,sinceitwilltaketheconfusionsinthesenseithasbeenusedto,whichisdirectlyopposedtothetrue。
33。Thisphenomenonasitentirelysubvertstheopinionofthosewhowillhaveusjudgeofdistancebylinesandangles,onwhichsuppositionitisaltogetherinexplicable,soitseemstomenosmallconfirmationofthetruthofthatprinciplewherebyitisexplained。Butinordercoamorefullexplicationofthispoint,andtoshewhowfarthehypothesisofthemind’sjudgingbythevariousdivergencyofraysmaybeofuseindeterminingtheapparentplaceofanobject,itwillbenecessarytopremisesomefewthings,whicharealreadywellknowntothosewhohaveanyskillindioptrics。
34。First,anyradiatingpointisthendistinctlyseenwhentheraysproceedingfromitare,bytherefractivepowerofthecrystalline,accuratelyreunitedintheretinaorfundoftheeye:butiftheyarereunited,eitherbeforetheyarriveattheretina,oraftertheyhavepassedit,thenthereisconfusedvision。
35。Secondly,supposeintheadjacentfiguresNPrepresentaneyedulyframedandretainingitsnaturalfigure。InFig。1theraysfallingnearlyparallelontheeye,arebythecrystallineABrefracted,soastheirfocusorpointofunionFfallsexactlyontheretina:butiftheraysfallsensiblydivergingontheeye,asinFig。2,thentheirfocusfallsbeyondtheretina:oriftheraysaremadetoconvergebythelensQSbeforetheycomeattheeye,asinFig。3,theirfocusFwillfallbeforetheretina。Inwhichtwolastcasesitisevidentfromt[sic]theforegoingsectionthattheappearanceofthepointZisconfused。Andbyhowmuchthegreateristheconvergency,ordivergency,oftheraysfallingonthepupil,bysomuchthefartherwillthepointoftheirreunionbefromtheretina,eitherbeforeorbehindit,andconsequentlythepointZwillappearbysomuchthemoreconfused。Andthis,bythebye,mayshewusthedifferencebetweenconfusedandfaintvision。Confusedvisioniswhentheraysproceedingsfromeachdistinctpointoftheobjectarenotaccuratelyrecollectedinonecorrespondingpointontheretina,buttakeupsomespacethereon,sothatraysfromdifferentpointsbecomemixedandconfusedtogether。Thisisopposedtoadistinctvision,andattendsnearobjects。Faintvisioniswhenbyreasonofthedistanceoftheobjectorgrossnessoftheinterjacentmediumfewraysarrivefromtheobjecttotheeye。Thisisopposedtovigorousorclearvision,andattendsremoteobjects。Buttoreturn。
36。Theeye,or(tospeaktruly)themind,perceivingonlytheconfusionitself,withouteverconsideringthecausefromwhichitproceeds,dothconstantlyannexthesamedegreeofdistancetothesamedegreeofconfusion。
Whetherthatconfusionbeoccasionedbyconvergingorbydivergingrays,itmattersnot。WhenceitfollowsthattheeyeviewingtheobjectZthroughtheglassQS(whichbyrefractioncauseththeraysZQ,ZS,etc。,toconverge)
shouldjudgeittobeatsuchanearnessatwhichifitwereplaceditwouldradiateontheeyewithraysdivergingtothatdegreeaswouldproducethesameconfusionwhichisnowproducedbyconvergingrays,i。e。wouldcoveraportionoftheretinaequaltoDC(vid。Fig。3supra)。
Butthenthismustbeunderstood(touseDr。Barrow’sphrase)seclusispræ;notionibusetpræ;judiciis,incaseweabstractfromallothercircumstancesofvision,suchasthefigure,size,faintness,etc。ofthevisibleobjects;allwhichdoordinarilyconcurtoformourideaofdistance,themindhavingbyfrequentexperienceobservedtheirseveralsortsordegreestobeconnetedwithvariousdistances。
37Itplainlyfollowsfromwhathathbeensaidthatapersonperfectlypurblind(i。e。thatcouldnotseeanobjectdistinctlybutwhenplacedclosetohiseye)wouldnotmakethesamewrongjudgmentthatothersdointheforementionedcase。Fortohimgreaterconfusionsconstantlysuggestinggreaterdistances,hemust,asherecedesfromtheglassandtheobjectgrowsmoreconfused,judgeittobeatafartherdistance,contrarytowhattheydowhohavehadtheperceptionoftheobjectsgrowingmoreconfusedconnectedwiththeideaofapproach。
38。Hencealsoitdothappeartheremaybegooduseofcomputationbylinesandanglesinoptics;notthatthemindjudgethofdistanceimmediatelybythem,butbecauseitjudgethbysomewhatwhichisconnectedwiththem,andtothedeterminationwhereoftheymaybesubservient。Thusthemindjudgingofthedistanceofanobjectbytheconfusednessofitsappearance,andthisconfusednessbeinggreaterorlessertothenakedeye,accordingastheobjectisseenbyraysmoreorlessdiverging,itfollowsthatamanmaymakeuseofthedivergencyoftheraysincomputingtheapparentdistance,thoughnotforitsownsake,yetonaccountoftheconfusionwithwhichitisconnected。But,soitis,theconfusionitselfisentirelyneglectedbymathematiciansashavingnonecessaryrelationwithdistance,suchasthegreaterorlesseranglesofdivergencyareconceivedtohave。
Andthese(especiallyforthattheyfallundermathematicalcomputation)
arealoneregardedindeterminingtheapparentplacesofobjects,asthoughtheywerethesoleandimmediatecauseofthejudgmentsthemindmakesofdistance。Whereas,intruth,theyshouldnotatallberegardedinthemselves,oranyotherwise,thanastheyaresupposedtobethecauseofconfusedvision。
39。Thenotconsideringofthishasbeenafundamentalandperplexingoversight。Forproofwhereofweneedgonofartherthanthecasebeforeus。Ithavingbeenobservedthatthemostdivergingraysbroughtintothemindtheideaofnearestdistance,andthatstill,asthedivergencydecreased,thedistanceincreased:anditbeingthoughttheconnexionbetweenthevariousdegreesofdivergencyanddistancewasimmediate;thisnaturallyleadsonetoconclude,fromanill—groundedanalogy,thatconvergingraysshallmakeanobjectappearatanimmensedistance:andthat,astheconvergencyincreases,thedistance(ifitwerepossible)shoulddosolikewise。ThatthiswasthecauseofDr。Barrow’smistakeisevidentfromhisownwordswhichwehavequoted。Whereashadthelearneddoctorobservedthatdivergingandconvergingrays,howoppositesoevertheymayseem,doneverthelessagreeinproducingthesameeffect,towit,confusednessofvision,greaterdegreeswhereofareproducedindifferently,eitherasthedivergencyorconvergencyandtheraysincreaseth。Andthatitisbythiseffect,whichisthesameinboth,thateitherthedivergencyorconvergencyisperceivedbytheeye;Isay,hadhebutconsideredthis,itiscertainhewouldhavemadeaquitecontraryjudgment,andrightlyconcludedthatthoserayswhichfallontheeyewithgreaterdegreesofconvergencyshouldmaketheobjectfromwhencetheyproceedappearbysomuchthenearer。Butitisplainitwasimpossibleforanymantoattaintoarightnotionofthismattersolongashehadregardonlytolinesandangles,anddidnotapprehendthetruenatureofvision,andhowfaritwasofmathematicalconsideration。
40。Beforewedismissthissubject,itisfitwetakenoticeofaqueryrelatingthereto,proposedbytheingeniousMr。Molyneux,ishisTreatiseofDioptrics,[2]wherespeakingofthisdifficulty,hehasthesewords:
’Andsohe(i。e。Dr。Barrow)leavesthisdifficultytothesolutionofothers,whichI(aftersogreatanexample)shalldolikewise;butwiththeresolutionofthesameadmirableauthorofnotquittingtheevidentdoarinewhichwehavebeforelaiddown,fordeterminingthelocusobjecti,onaccountofbeingpressedbyonedifficultywhichseemsinexplicabletillamoreintimateknowledgeofthevisivefacultybeobtainedbymortals。
Inthemeantime,Iproposeittotheconsiderationoftheingenious,whetherthelocusapparensofanobjectplacedasinthis9thsectionbenotasmuchbeforetheeyeasthedistinctbaseisbehindtheeye!’Towhichquerywemayventuretoanswerinthenegative。Forinthepresentcasetherulefordeterminingthedistanceofthedistinctbase,orrespectivefocusfromtheglass,isthis:Asthedifferencebetweenthedistanceoftheobjectandfocusistothefocusorfocallength,sothedistanceoftheobjectfromtheglassistothedistanceoftherespectivefocusordistinctbasefromtheglass。[3]Letusnowsupposetheobjecttobeplacedatthedistanceofthefocallength,andonehalfofthefocallengthfromtheglass,andtheeyeclosetotheglass,henceitwillfollowbytherulethatthedistanceofthedistinctbasebehindtheeyeisdoublethetruedistanceoftheobjectbeforetheeye。IfthereforeMr。Molyneux’sconjectureheldgood,itwouldfollowthattheeyeshouldseetheobjecttwiceasfaroffasitreallyis;andinothercasesatthreeorfourtimesitsduedistance,ormore。Butthismanifestlycontradictsexperience,theobjectneverappearing,atfarthest,beyonditsduedistance。Whatever,therefore,isbuiltonthissupposition(vid。Corol。I。Prop。57,ibid。)comestothegroundalongwithit。
41。Fromwhathathbeenpremiseditisamanifestconsequencethatamanbornblind,beingmadetosee,would,atfirst,havenoideaofdistancebysight;thesunandstars,theremotestobjectsaswellasthenearer,wouldallseemtobeinhiseye,orratherinhismind。Theobjectsintromittedbysightwouldseemtohim(asintruththeyare)nootherthananewsetofthoughtsorsensations,eachwhereofisasneartohimastheperceptionsofpainorpleasure,orthemostinwardpassionsofhissoul。Forourjudgingobjectsprovidedbysighttobeatanydistance,orwithoutthemind,is(vid。sect。28)entirelytheeffectofexperience,whichoneinthosecircumstancescouldnotyethaveattainedto。
42。Itisindeedotherwiseuponthecommonsuppositionthatmenjudgeofdistancebytheangleoftheopticaxes,justasoneinthedark,orablind—manbytheanglecomprehendedbytwosticks,onewhereofheheldineachhand。Forifthisweretrue,itwouldfollowthatoneblindfromhisbirthbeingmadetosee,shouldstandinneedofnonewexperienceinordertoperceivedistancebysight。Butthatthisisfalsehas,Ithink,beensufficientlydemonstrated。
43。Andperhapsuponastrictinquiryweshallnotfindthateventhosewhofromtheirbirthhavegrownupinacontinuedhabitofseeingareirrecoverablyprejudicedontheotherside,towit,inthinkingwhattheyseetobeatadistancefromthem。Foratthistimeitseemsagreedonallhands,bythosewhohavehadanythoughtsofthatmatter,thatcolours,whicharetheproperandimmediateobjectofsight,arenotwithoutthemind。Butthenitwillbesaid,bysightwehavealsotheideasofextension,andfigure,andmotion;allwhichmaywellbethoughtwithout,andatsomedistancefromthemind,thoughcolourshouldnot。InanswertothisIappealtoanyman’sexperience,whetherthevisibleextensionofanyobjectdothnotappearasneartohimasthecolourofthatobject;nay,whethertheydonotbothseemtobeintheverysameplace。Isnottheextensionweseecoloured,andisitpossibleforus,somuchasinthought,toseparateandabstractcolourfromextension?Now,wheretheextensionistheresurelyisthefigure,andtherethemotiontoo。Ispeakofthosewhichareperceivedbysight。
44。Butforafullerexplicationofthispoint,andtoshewthattheimmediateobjectsofsightarenotsomuchastheideasorresemblancesofthingsplacedatadistance,itisrequisitethatwelooknearerintothematterandcarefullyobservewhatismeantincommondiscourse,whenonesaysthatwhichheseesisatadistancefromhim。Suppose,forexample,thatlookingatthemoonIshouldsayitwerefiftyorsixtysemidiametersoftheearthdistantfromme。Letusseewhatmoonthisisspokenof:itisplainitcannotbethevisiblemoon,oranythinglikethevisiblemoon,orthatwhichIsee,whichisonlyaround,luminousplaneofaboutthirtyvisiblepointsindiameter。ForincaseIamcarriedfromtheplacewhereIstanddirectlytowardsthemoon,itismanifesttheobjectvaries,stillasIgoon;andbythetimethatIamadvancedfiftyorsixtysemidiametersoftheearth,Ishallbesofarfrombeingnearasmall,round,luminousflatthatIshallperceivenothinglikeit;thisobjecthavinglongsincedisappeared,andifIwouldrecoverit,itmustbebygoingbacktotheearthfromwhenceIsetout。Again,supposeIperceivebysightthefaintandobscureideaofsomethingwhichIdoubtwhetheritbeaman,oratree,oratower,butjudgeittobeatthedistanceofaboutamile。ItisplainIcannotmeanthatwhatIseeisamileoff,orthatitistheimageorlikenessofanythingwhichisamileoff,sincethateverystepItaketowardsittheappearancealters,andfrombeingobscure,small,andfaint,growsclear,large,andvigorous。AndwhenIcometothemile’send,thatwhichIsawfirstisquitelost,neitherdoIfindanythinginthelikenessofit。
45。Intheseandthelikeinstancesthetruthofthematterstandsthus:
havingofalongtimeexperiencedcertainideas,perceivablebytouch,asdistance,tangiblefigure,andsolidity,tohavebeenconnectedwithcertainideasofsight,Idouponperceivingtheseideasofsightforthwithconcludewhattangibleideasare,bythewontedordinarycourseofNatureliketofollow。LookingatanobjectIperceiveacertainvisiblefigureandcolour,withsomedegreeoffaintnessandothercircumstances,whichfromwhatIhaveformerlyobserved,determinemetothinkthatifIadvanceforwardsomanypacesormiles,Ishallbeaffectedwithsuchandsuchideasoftouch:sothatintruthandstrictnessofspeechIneitherseedistanceitself,noranythingthatItaketobeatadistance。Isay,neitherdistancenorthingsplacedatadistancearethemselves,ortheirideas,trulyperceivedbysight。ThisIampersuadedof,astowhatconcernsmyself:
andIbelievewhoeverwilllooknarrowlyintohisownthoughtsandexaminewhathemeansbysayingheseesthisorthatthingatadistance,willagreewithmethatwhatheseesonlysuggeststohisunderstandingthatafterhavingpassedacertaindistance,tobemeasuredbythemotionofhisbody,whichisperceivablebytouch,heshallcometoperceivesuchandsuchtangibleideaswhichhavebeenusuallyconnectedwithsuchandsuchvisibleideas。Butthatonemightbedeceivedbythesesuggestionsofsense,andthatthereisnonecessaryconnexionbetweenvisibleandtangibleideassuggestedbythem,weneedgonofartherthanthenextlooking—glassorpicturestobeconvinced。NotethatwhenIspeakoftangibleideas,Itakethewordideaforanytheimmediateobjectofsenseorunderstanding,inwhichlargesignificationitiscommonlyusedbythemoderns。
46。Fromwhatwehaveshewnitisamanifestconsequencethattheideasofspace,outness,andthingsplacedatadistancearenot,strictlyspeaking,theobjectofsight;theyarenototherwiseperceivedbytheeyethanbytheear。SittinginmystudyIhearacoachdrivealongthestreet;Ilookthroughthecasementandseeit;Iwalkoutandenterintoit;thus,commonspeechwouldinclineonetothinkIheard,saw,andtouchedthesamething,towit,thecoach。Itisneverthelesscertain,theideasintromittedbyeachsensearewidelydifferentanddistinctfromeachother;buthavingbeenobservedconstantlytogotogether,theyarespokenofasoneandthesamething。BythevariationofthenoiseIperceivethedifferentdistancesofthecoach,andknowthatitapproachesbeforeIlookout。
ThusbytheearIperceivedistance,justafterthesamemannerasIdobytheeye。
47。IdonotneverthelesssayIheardistanceinlikemannerasIsaythatIseeit,theideasperceivedbyhearingnotbeingsoapttobeconfoundedwiththeideasoftouchasthoseofsightare。Solikewiseamaniseasilyconvincedthatbodiesandexternalthingsarenotproperlytheobjectofhearing;butonlysounds,bythemediationwhereoftheideaofthisorthatbodyordistanceissuggestedtohisthoughts。Butthenoneiswithmoredifficultybroughttodiscernthedifferencethereisbetwixttheideasofsightandtouch:thoughitbecertainamannomoreseesandfeelsthesamethingthanhehearsandfeelsthesamething。
48。Onereasonofwhichseemstobethis。Itisthoughtagreatabsurditytoimaginethatoneandthesamethingshouldhaveanymorethanoneextension,andonefigure。Buttheextensionandfigureofabody,beingletintothemindtwoways,andthatindifferentlyeitherbysightortouch,itseemstofollowthatweseethesameextensionandthesamefigurewhichwefeel。
49。Butifwetakeacloseandaccurateviewofthings,itmustbeacknowledgedthatweneverseeandfeeloneandthesameobject。Thatwhichisseenisonething,andthatwhichisfeltisanother。Ifthevisiblefigureandextensionbenotthesamewiththetangiblefigureandextension,wearenottoinferthatoneandthesamethinghasdiversextensions。Thetrueconsequenceisthattheobjectsofsightandtoucharetwodistinctthings。Itmayperhapsrequiresomethoughtrightlytoconceivethisdistinction。
Andthedifficultyseemsnotalittleincreased,becausethecombinationofvisibleideashathconstantlythesamenameasthecombinationoftangibleideaswherewithitisconnected:whichdothofnecessityarisefromtheuseandendoflanguage。
50。Inorderthereforetotreataccuratelyandunconfusedlyofvision,wemustbearinmindthattherearetwosortsofobjectsapprehendedbytheeye,theoneprimarilyandimmediately,theothersecondarilyandbyinterventionoftheformer。Thoseofthefirstsortneitherare,norappeartobe,withoutthemind,oratanydistanceoff;theymayindeedgrowgreaterorsmaller,moreconfused,ormoreclear,ormorefaint,buttheydonot,cannotapproachorrecedefromus。Wheneverwesayanobjectisatadistance,wheneverwesayitdrawsnear,orgoesfartheroff,wemustalwaysmeanitofthelattersort,whichproperlybelongtothetouch,andarenotsotrulyperceivedassuggestedbytheeyeinlikemannerasthoughtsbytheear。
51。Nosoonerdowehearthewordsofafamiliarlanguagepronouncedinourears,buttheideascorrespondingtheretopresentthemselvestoourminds:intheverysameinstantthesoundandthemeaningentertheunderstanding:socloselyaretheyunitedthatitisnotinourpowertokeepouttheone,exceptweexcludetheotheralso。Weevenactinallrespectsasifweheardtheverythoughtsthemselves。Solikewisethesecondaryobjects,orthosewhichareonlysuggestedbysight,dooftenmorestronglyaffectus,andaremoreregardedthantheproperobjectsofthatsense;
alongwithwhichtheyenterintothemind,andwithwhichtheyhaveafarmorestrictconnexion,thanideashavewithwords。Henceitiswefinditsodifficulttodiscriminatebetweentheimmediateandmediateobjectsofsight,andaresopronetoattributetotheformerwhatbelongsonlytothelatter。Theyare,asitwere,mostcloselytwisted,blended,andincorporatedtogether。Andtheprejudiceisconfirmedandrivetedinourthoughtsbyalongtractoftime,bytheuseoflanguage,andwantofreflexion。
However,Ibelieveanyonethatshallattentivelyconsiderwhatwehavealreadysaid,andshallsay,uponthissubjectbeforewehavedone(especiallyifhepursueitinhisownthoughts)maybeabletodeliverhimselffromthatprejudice。SureIamitisworthsomeattention,towhoeverwouldunderstandthetruenatureofvision。
52。Ihavenowdonewithdistance,andproceedtoshewhowitisthatweperceivebysightthemagnitudeofobjects。Itistheopinionofsomethatwedoitbyangles,orbyanglesinconjunctionwithdistance:butneitheranglesnordistancebeingperceivablebysight,andthethingsweseebeingintruthatnodistancefromus,itfollowsthataswehaveshewnlinesandanglesnottobethemediumthemindmakesuseofinapprehendingtheapparentplace,soneitheraretheythemediumwherebyitapprehendstheapparentmagnitudeofobjects。
53。Itiswellknownthatthesameextensionataneardistanceshallsubtendagreaterangle,andatafartherdistancealesserangle。Andbythisprinciple(wearetold)themindestimatesthemagnitudeofanobject,comparingtheangleunderwhichitisseenwithitsdistance,andthenceinferringthemagnitudethereof。Whatinclinesmentothismistake(besidethehumourofmakingoneseebygeometry)isthatthesameperceptionsorideaswhichsuggestdistancedoalsosuggestmagnitude。Butifweexamineitweshallfindtheysuggestthelatterasimmediatelyastheformer。
Isay,theydonotfirstsuggestdistance,andthenleaveittothejudgmenttousethatasamediumwherebytocollectthemagnitude;buttheyhaveascloseandimmediateaconnexionwiththemagnitudeaswiththedistance;
andsuggestmagnitudeasindependentlyofdistanceastheydodistanceindependentlyofmagnitude。Allwhichwillbeevidenttowhoeverconsiderswhathathbeenalreadysaid,andwhatfollows。
54。Ithathbeenshewntherearetwosortsofobjectsapprehendedbysight;eachwhereofhathitsdistinctmagnitude,orextension。Theone,properlytangible,i。e。tobeperceivedandmeasuredbytouch,andnotimmediatelyfallingunderthesenseofseeing:theother,properlyandimmediatelyvisible,bymediationofwhichtheformerisbroughtinview。Eachofthesemagnitudesaregreaterorlesser,accordingastheycontaininthemmoreorfewerpoints,theybeingmadeupofpointsorminimums。
For,whatevermaybesaidofextensioninabtract,itiscertainsensibleextensionisnotinfinitelydivisible。ThereisaMinimumTangibileandaMinimumVisibile,beyondwhichsensecannotperceive。
Thiseveryone’sexperiencewillinformhim。
55。Themagnitudeoftheobjectwhichexistswithoutthemind,andisatadistance,continuesalwaysinvariablythesame:butthevisibleobjectstillchangingasyouapproachto,orrecedefrom,thetangibleobject,ithathnofixedanddeterminategreatness。Whenever,therefore,wespeakofthemagnitudeofanything,forinstanceatreeorahouse,wemustmeanthetangiblemagnitude,otherwisetherecanbenothingsteadyandfreefromambiguityspokenofit。Butthoughthetangibleandvisiblemagnitudeintruthbelongtotwodistinctobjects:Ishallnevertheless(especiallysincethoseobjectsarecalledbythesamename,andareobservedtocoexist),toavoidtediousnessandsingularityofspeech,sometimesspeakofthemasbelongingtooneandthesamething。
56。Nowinordertodiscoverbywhatmeansthemagnitudeoftangibleobjectsisperceivedbysight。Ineedonlyreflectonwhatpassesinmyownmind,andobservewhatthosethingsbewhichintroducetheideasofgreaterorlesserintomythoughts,whenIlookonanyobject。AndtheseIfindtobe,first,themagnitudeorextensionofthevisibleobject,whichbeingimmediatelyperceivedbysight,isconnectedwiththatotherwhichistangibleandplacedatadistance。Secondly,theconfusionordistinctness。Andthirdly,thevigorousnessorfaintnessoftheaforesaidvisibleappearance。Ceterisparibus,byhowmuchthegreaterorlesserthevisibleobjectis,bysomuchthegreaterorlesserdoI
concludethetangibleobjecttobe。But,betheideaimmediatelyperceivedbysightneversolarge,yetifitbewithalconfused,Ijudgethemagnitudeofthethingtobebutsmall。Ifitbedistinctandclear,Ijudgeitgreater。
Andifitbefaint,Iapprehendittobeyetgreater。Whatisheremeantbyconfusionandfaintnesshathbeenexplainedinsect。35。
57。Moreoverthejudgmentswemakeofgreatnessdo,inlikemannerasthoseofdistance,dependonthedispositionoftheeye,alsoonthefigure,number,andsituationofobjectsandothercircumstancesthathavebeenobservedtoattendgreatorsmalltangiblemagnitudes。Thus,forinstance,theverysamequantityofvisibleextension,whichinthefigureofatowerdothsuggesttheideaofgreatmagnitude,shallinthefigureofamansuggesttheideaofmuchsmallermagnitude。Thatthisisowingtotheexperiencewehavehadoftheusualbignessofatowerandamannoone,Isuppose,needbetold。
58。Itisalsoevidentthatconfusionorfaintnesshavenomoreanecessaryconnexionwithlittleorgreatmagnitudethantheyhavewithlittleorgreatdistance。Astheysuggestthelatter,sotheysuggesttheformertoourminds。Andbyconsequence,ifitwerenotforexperience,weshouldnomorejudgeafaintorconfusedappearancetobeconnectedwithgreatorlittlemagnitude,thanweshouldthatitwasconnectedwithgreatorlittledistance。
59。Norwillitbefoundthatgreatorsmallvisiblemagnitudehathanynecessaryrelationtogreatorsmalltangiblemagnitude:sothattheonemaycertainlybeinferredfromtheother。Butbeforewecometotheproofofthis,itisfitweconsiderthedifferencethereisbetwixttheextensionandfigurewhichistheproperobjectoftouch,andthatotherwhichistermedvisible;andhowtheformerisprincipally,thoughnotimmediatelytakennoticeof,whenwelookatanyobject。Thishasbeenbeforementioned,butweshallhereinquireintothecausethereof。Weregardtheobjectsthatenvironusinproportionastheyareadaptedtobenefitorinjureourownbodies,andtherebyproduceinourmindsthesensationofpleasureorpain。Nowbodiesoperatingonourorgans,byanimmediateapplication,andthehurtoradvantagearisingtherefrom,dependingaltogetheronthetangible,andnotatallonthevisible,qualitiesofanyobject:thisisaplainreasonwhythoseshouldberegardedbyusmuchmorethanthese:andforthisendthevisivesenseseemstohavebeenbestowedonanimals,towit,thatbytheperceptionofvisibleideas(whichinthemselvesarenotcapableofaffectingoranywisealteringtheframeoftheirbodies)
theymaybeabletoforesee(fromtheexperiencetheyhavehadwhattangibleideasareconnectedwithsuchandsuchvisibleideas)anddamageorbenefitwhichisliketoensue,upontheapplicationoftheirownbodiestothisorthatbodywhichisatadistance。Whichforesight,hownecessaryitistothepreservationofananimal,everyone’sexperiencecaninformhim。
Henceitisthatwhenwelookatanobject,thetangiblefigureandextensionthereofareprincipallyattendedto;whilstthereissmallheedtakenofthevisiblefigureandmagnitude,which,thoughmoreimmediatelyperceived,dolessconcernus,andarenotfittedtoproduceanyalterationinourbodies。
60。Thatthematteroffactistruewillbeevidenttoanyonewhoconsidersthatamanplacedattenfootdistanceisthoughtasgreatasifhewereplacedatadistanceonlyoffivefoot:whichistruenotwithrelationtothevisible,buttangiblegreatnessoftheobject:thevisiblemagnitudebeingfargreateratonestation:thanitisattheother。
61。Inches,feet,etc。,aresettledstatedlengthswherebywemeasureobjectsandestimatetheirmagnitude:wesay,forexample,anobjectappearstobesixinchesorsixfootlong。Now,thatthiscannotbemeantofvisibleinches,etc。,isevident,becauseavisibleinchisitselfnoconstant,determinatemagnitude,andcannotthereforeservetomarkoutanddeterminethemagnitudeofanyotherthing。Takeaninchmarkeduponaruler:viewit,successively,atthedistanceofhalfafoot,afoot,afootandahalf,etc。,fromtheeye:ateachofwhich,andatalltheintermediatedistances,theinchshallhaveadifferentvisibleextension,i。e。thereshallbemoreorfewerpointsdiscernedinit。NowIaskwhichofallthesevariousextensionsisthatstated,determinateonethatisagreedonforacommonmeasureofothermagnitudes?Noreasoncanbeassignedwhyweshouldpitchononemorethananother:andexcepttherebesomeinvariable,determinateextensionfixedontobemarkedt~thewordinch,itisplainitcanbeusedtolittlepurpose;andtosayathingcontainsthisorthatnumberofinchesshallimplynomorethanthatitisextended,withoutbringinganyparticularideaofthatextensionintothemind。Farther,aninchandafoot,fromdifferentdistances,shallbothexhibitthesamevisiblemagnitude,andyetatthesametimeyoushallsaythatoneseemsseveraltimesgreaterthantheother。Fromallwhichitismanifestthatthejudgmentswemakeofthemagnitudeofobjectsbysightarealtogetherinreferencetotheirtangibleextension。Wheneverwesayanobjectisgreat,orsmall,ofthisorthatdeterminatemeasure,Isayitmustbemeantofthetangible,andnotthevisibleextension,which,thoughimmediatelyperceived,isneverthelesslittletakennoticeof。
62。Now,thatthereisnonecessaryconnexionbetweenthesetwodistinctextensionsisevidentfromhence:becauseoureyesmighthavebeenframedinsuchamannerastobeabletoseenothingbutwhatwerelessthantheminimumtangibile。Inwhichcaseitisnotimpossiblewemighthaveperceivedalltheimmediateobjectsofsight,theverysamethatwedonow:butuntothosevisibleappearancestherewouldnotbeconnectedthosedifferenttangiblemagnitudesthatarenow。Whichshewsthejudgmentswemakeofthcmagnitudeofthingsplacedatadistancefromthevariousgreatnessoftheimmediateobjectsofsightdonotarisefromanyessentialornecessarybutonlyacustomarytie,whichhasbeenobservedbetweenthem。
63。Moreover,itisnotonlycertainthatanyideaofsightmightnothavebeenconnectedwiththisorthatideaoftouch,whichwenowobservetoaccompanyit:butalsothatthegreatervisiblemagnitudesmighthavebeenconnectedwith,andintroducedintoourmindslessertangiblemagnitudesandthelesservisiblemagnitudesgreatertangiblemagnitudes。Nay,thatitactuallyissowehavedailyexperience;thatobjectwhichmakesastrongandlargeappearance,notseemingnearsogreatasanother,thevisiblemagnitudewhereofismuchless,butmorefaint,andtheappearanceupper,orwhichisthesamethingpaintedlowerontheretina,whichfaintnessandsituationsuggestbothgreatermagnitudeandgreaterdistance。
64。Fromwhich,andfromsect。57and58,itismanifestthataswedonotperceivethemagnitudesofobjectsimmediatelybysight,soneitherdoweperceivethembythemediationofanythingwhichhasanecessaryconnexionwiththem。Thoseideasthatnowsuggestuntousthevariousmagnitudesofexternalobjectsbeforewetouchthem,mightpossiblyhavesuggestednosuchthing:ortheymighthavesignifiedtheminadirectcontrarymanner:
sothattheverysameideas,ontheperceptionwhereofwejudgeanobjecttobesmall,mightaswellhaveservedtomakeusconcludeitgreat。Thoseideasbeingintheirownnatureequallyfittedtobringintoourmindstheideaofsmallorgreat,ornosizeatallofoutwardobjects;justasthewordsofanylanguageareintheirownnatureindifferenttosignifythisorthatthingornothingatall。
65。Asweseedistance,soweseemagnitude。Andweseebothinthesamewaythatweseeshameorangerinthelooksofaman。Thosepassionsarethemselvesinvisible,theyareneverthelessletinbytheeyealongwithcoloursandalterationsofcountenance,whicharetheimmediateobjectofvision:andwhichsignifythemfornootherreasonthanbarelybecausetheyhavebeenobservedtoaccompanythem。Withoutwhichexperienceweshouldnomorehavetakenblushingforasignofshamethanofgladness。
66。Weareneverthelessexceedingpronetoimaginethosethingswhichareperceivedonlybythemediationofotherstobethemselvestheimmediateobjectsofsight;or,atleast,tohaveintheirownnatureafitnesstobesuggestedbythem,beforeevertheyhadbeenexperiencedtocoexistwiththem。Fromwhichprejudiceeveryone,perhaps,willnotfinditeasytoemancipatehimself,byany[but]theclearestconvictionsofreason。
Andtherearesomegroundstothinkthatiftherewasoneonlyinvariableanduniversallanguagesintheworld,andthatmenwerebornwiththefacultyofspeakingit,itwouldbetheopinionofmanythattheideasofothermen’smindswereproperlyperceivedbytheear,orhadatleastanecessaryandinseparabletiewiththesoundsthatwereaffixedtothem。Allwhichseemstoarisefromwantofadueapplicationofourdiscerningfaculty,therebytodiscriminatebetweentheideasthatareinourunderstandings,andconsiderthemapartfromeachother;whichwouldpreserveusfromconfoundingthosethataredifferent,andmakeusseewhatideasdo,andwhatdonotincludeorimplythisorthatotheridea。
67。Thereisacelebratedphenomenon,thesolutionwhereofIshallattempttogivebytheprinciplesthathavebeenlaiddown,inreferencetothemannerwhereinweapprehendbysightthemagnitudeofobjects。Theapparentmagnitudeofthemoonwhenplacedinthehorizonismuchgreaterthanwhenitisinthemeridian,thoughtheangleunderwhichthediameterofthemoonisseenbenotobservedgreaterintheformercasethaninthelatter:
andthehorizontalmoondothnotconstantlyappearofthesamebigness,butatsometimesseemethfargreaterthanatothers。
68。Nowinordertoexplainthereasonofthemoon’sappearinggreaterthanordinaryinthehorizon,itmustbeobservedthattheparticleswhichcomposeouratmosphereintercepttheraysoflightproceedingfromanyobjecttotheeye;andbyhowmuchthegreateristheportionofatmosphereinterjacentbetweentheobjectandtheeye,bysomuchthemorearetheraysintercepted;andbyconsequencetheappearanceoftheobjectrenderedmorefaint,everyobjectappearingmorevigorousormorefaintinproportionasitsendethmoreorfewerraysintotheeye。Nowbetweentheeyeandthemoon,whensituatedinthehorizon,thereliesafargreaterquantityofatmospherethantheredoeswhenthemoonisinthemeridian。Whenceitcomestopassthattheappearanceofthehorizontalmoonisfainter,andthereforebysect。56itshouldbethoughtbiggerinthatsituationthaninthemeridian,orinanyotherelevationabovethehorizon。