127。Ithavingbeenshewnthattherearenoabstractideasoffigure,andthatitisimpossibleforusbyanyprecisionofthoughttoframeanideaofextensionseparatefromallothervisibleandtangiblequalitieswhichshallbecommonbothtosightandtouch:thequestionnowremainingis,whethertheparticularextensions,figures,andmotionsperceivedbysightbeofthesamekindwiththeparticularextensions,figures,andmotionsperceivedbytouch?InanswertowhichIshallventuretolaydownthefollowingproposition:Theextension,figures,andmotionsperceivedbysightarespecificallydistinctfromtheideasoftouchcalledbythesamenames,noristhereanysuchthingasoneideaorkindofideacommontobothsenses。Thispropositionmaywithoutmuchdifficultybecollectedfromwhathathbeensaidinseveralplacesofthisessay。
Butbecauseitseemssoremotefrom,andcontraryto,thereceivednotionsandsettledopinionofmankind,Ishallattempttodemonstrateitmoreparticularlyandatlargebythefollowingarguments。
128。WhenuponperceptionofanideaIrangeitunderthisorthatsort,itisbecauseitisperceivedafterthesamemanner,orbecauseithasalikenessorconformitywith,oraffectsmeinthesamewayas,theideasofthesortIrankitunder。Inshort,itmustnotbeentirelynew,buthavesomethinginitoldandalreadyperceivedbyme。Itmust,Isay,havesomuchatleastincommonwiththeideasIhavebeforeknownandnamedastomakemegiveitthesamenamewiththem。Butithasbeen,ifImistakenot,clearlymadeoutthatamanbornblindwouldnotatfirstreceptionofhissightthinkthethingshesawwereofthesamenaturewiththeobjectsoftouch,orhadanythingincommonwiththem;butthattheywereanewsetofideas,perceivedinanewmanner,andentirelydifferentfromallhehadeverperceivedbefore:sothathewouldnotcallthembythesamename,norreputethemtobeofthesamesortwithanythinghehadhithertoknown。
129。Secondly,lightandcoloursareallowedbyalltoconstituteasonorspeciesentirelydifferentfromtheideasoftouch:norwillanyman,Ipresume,saytheycanmakethemselvesperceivedbythatsense:butthereisnootherimmediateobjectofsightbesideslightandcolours。
Itisthereforeadirectconsequencethatthereisnoideacommontobothsenses。
130。Itisaprevailingopinion,evenamongstthosewhohavethoughtandwritmostaccuratelyconcerningourideasandthewayswherebytheyenterintotheunderstanding,thatsomethingmoreisperceivedbysightthanbarelylightandcolourswiththeirvariations。Mr。Locketermethsight,’Themostcomprehensiveofalloursenses,conveyingtoourmindstheideasoflightandcolours,whicharepeculiaronlytothatsense;
andalsothefardifferentideasofspace,figure,andmotion。EssayonHumanUnderstand。B。ii。C。9。S。9。Spaceordistance,wehaveshewn,isnototherwisetheobjectofsightthanofhearing。vid。sect。
46。Andasforfigureandextension,Ileaveittoanyonethatshallcalmlyattendtohisownclearanddistinctideastodecidewhetherhehadanyideaintromittedimmediatelyandproperlybysightsaveonlylightandcolours:orwhetheritDepossibleforhimtoframeinhismindadistinctabstractideaofvisibleextensionorfigureexclusiveofallcolour:andontheotherhand,whetherhecanconceivecolourwithoutvisibleextension?
Formyownpart,ImustconfessIamnotabletoattainsogreatanicetyofabstraction:inastrictsense,Iseenothingbutlightandcolours,withtheirseveralshadesandvariations。HewhobesidethesedothalsoperceivebysightideasfardifferentanddistinctfromthemhaththatfacultyinadegreemoreperfectandcomprehensivethanIcanpretendto。
Itmustbeownedthatbythemediationoflightandcoloursotherfardifferentideasaresuggestedtomymind:butsotheyarebyhearing,whichbesidesoundswhicharepeculiartothatsense,dothbytheirmediationsuggestnotonlyspace,figure,andmotion,butalsoallotherideaswhatsoeverthatcanbesignifiedbywords。
131。Thirdly,itis,Ithink,anaxiomuniversallyreceivedthatquantitiesofthesamekindmaybeaddedtogetherandmakeoneentiresum。
Mathematiciansaddlinestogether:buttheydonotaddalinetoasolid,orconceiveitasmakingonesumwithasurface:thesethreekindsofquantitybeingthoughtincapableofanysuchmutualaddition,andconsequentlyofbeingcomparedtogetherintheseveralwaysofproportion,arebythenesteemedentirelydisparateandheterogeneous。Nowletanyonetryinhisthoughtstoaddavisiblelineorsurfacetoatangiblelineorsurface,soastoconceivethemmakingonecontinuedsumorwhole。Hethatcandothismaythinkthemhomogeneous:buthethatcannot,mustbytheforegoingaxiomthinkthemheterogeneous。AblueandaredlineIcanconceiveaddedtogetherintoonesumandmakingonecontinuedline:buttomakeinmythoughtsonecontinuedlineofavisibleandtangiblelineaddedtogetheris,Ifind,ataskfarmoredifficult,andeveninsurmountable:andIleaveittothereflexionandexperienceofeveryparticularpersontodetermineforhimself。
132。AfartherconfirmationofourtenetmaybedrawnfromthesolutionofMr。Molyneux’sproblem,publishedbyMr。LockeinhisEssay:whichIshallsetdownasittherelies,togetherwithMr。Locke’sopinionofit,’\"Supposeamanbornblind,andnowadult,andtaughtbyhistouchtodistinguishbetweenacubeandasphereofthesamemetal,andnighly[sic]ofthesamebigness,soastotell,whenhefeltoneandt’other,whichisthecubeandwhichthesphere。Supposethenthecubeandsphereplacedonatable,andtheblindmantobemadetosee:quaere,whetherbyhissight,beforehetouchedthem,hecouldnowdistinguishandtellwhichistheglobe,whichthecube?\"Towhichtheacuteandjudiciousproposeranswers:\"Not。Forthoughhehasobtainedtheexperienceofhowaglobe,howacube,affectshistouch,yethehasnotyetattainedtheexperiencethatwhataffectshistouchsoorsomustaffecthissightsoorso:orthataprotuberantangleinthecubethatpressedhishandunequallyshallappeartohiseyeasitdothinthecube。\"Iagreewiththisthinkinggentleman,whomIamproudtocallmyfriend,inhisanswertothishisproblem;andamofopinionthattheblindmanatfirstsightwouldnotbeablewithcertaintytosaywhichwastheglobe,whichthecube,whilstheonlysawthem。’(EssayonHumanUnderstanding,B。ii。C。9。S。8。)
133。Now,ifasquaresurfaceperceivedbytouchbeofthesamesortwithasquaresurfaceperceivedbysight,itiscertaintheblindmanherementionedmightknowasquaresurfaceassoonashesawit:itisnomorebutintroducingintohismindbyanewinletanideahehasbeenalreadywellacquaintedwith。Since,therefore,heissupposedtohaveknownbyhistouchthatacubeisabodyterminatedbysquaresurfaces,andthatasphereisnotterminatedbysquaresurfaces:uponthesuppositionthatavisibleandtangiblesquaredifferonlyinnumeroitfollowsthathemightknow,bytheunerringmarkofthesquaresurfaces,whichwasthecube,andwhichnot,whileheonlysawthem。Wemustthereforealloweitherthatvisibleextensionandfiguresarespecificallydistinctfromtangibleextensionandfigures,orelsethatthesolutionofthisproblemgivenbythosetwothoughtfulandingeniousmeniswrong。
134。MuchmoremightbelaidtogetherinproofofthepropositionI
haveadvanced:butwhathasbeensaidis,ifImistakenot,sufficienttoconvinceanyonethatshallyieldareasonableattention:andasforthosethatwillnotbeatthepainsofalittlethought,nomultiplicationofwordswilleversufficetomakethemunderstandthetruth,orrightlyconceivemymeaning。
135。Icannotletgotheabove—mentionedproblemwithoutsomereflexiononit。Ithathbeenevidentthatamanblindfromhisbirthwouldnot,atfirstsight,denominateanythinghesawbythenameshehadbeenusedtoappropriatetoideasoftouch,vid。sect。106。Cube,sphere,tablearewordshehasknownappliedtothingsperceivablebytouch,buttothingsperfectlyintangibleheneverknewthemapplied。Thosewordsintheirwontedapplicationalwaysmarkedouttohismindbodiesorsolidthingswhichwereperceivedbytheresistancetheygave:butthereisnosolidity,noresistanceorprotrusion,perceivedbysight。Inshort,theideasofsightareallnewperceptions,towhichtherebenonamesannexedinhismind:hecannotthereforeunderstandwhatissaidtohimconcerningthem:andtoaskofthetwobodieshesawplacedonthetable,whichwasthesphere,whichthecube?weretohimaquestiondownrightbanteringandunintelligible;nothingheseesbeingabletosuggesttohisthoughtstheideaofbody,distance,oringeneralofanythinghehadalreadyknown。
136。Itisamistaketothinkthesamethingaffectsbothsightandtouch。Ifthesameangleorsquarewhichistheobjectoftouchbealsotheobjectofvision,whatshouldhindertheblindmanatfirstsightfromknowingit?Forthoughthemannerwhereinitaffectsthesightbedifferentfromthatwhereinitaffectedhistouch,yet,therebeingbesidehismannerorcircumstance,whichisnewandunknown,theangleorfigure,whichisoldandknown,hecannotchoosebutdiscernit。
137。Visiblefigureandextensionhavingbeendemonstratedtobeofanatureentirelydifferentandheterogeneousfromtangiblefigureandextension,itremainsthatweinquireconcerning。Nowthatvisiblemotionisnotofthesamesortwithtangiblemotionseemstoneednofartherproof,itbeinganevidentcorollaryfromwhatwehaveshewnconcerningthedifferencethereisbetweenvisibleandtangibleextension:butforamorefullandexpressproofhereofweneedonlyobservethatonewhohadnotyetexperiencedvisionwouldnotatfirstsightknowmotion。Whenceitclearlyfollowsthatmotionperceivablebysightisofasortdistinctfrommotionperceivablebytouch。TheantecedentIprovethus:bytouchhecouldnotperceiveanymotionbutwhatwasupordown,totherightorleft,nearerorfartherfromhim;besidestheseandtheirseveralvarietiesorcomplications,itisimpossibleheshouldhaveanyideaofmotion。Hewouldnotthereforethinkanythingtobemotion,orgivethenamemotiontoanyideawhichhecouldnotrangeundersomeorotherofthoseparticularkindsthereof。
Butfromsect。95itisplainthatbythemereactofvisionhecouldnotknowmotionupwardsordownwards,totherightorleft,orinanyotherpossibledirection。FromwhichIconcludehewouldnotknowmotionatallatfirstsight。Asfortheideaofmotioninabstract,Ishallnotwastepaperaboutit,butleaveittomyreadertomakethebesthecanofit。
Tomeitisperfectlyunintelligible。
138。Theconsiderationofmotionmayfurnishanewfieldforinquiry:
butsincethemannerwhereinthemindapprehendsbysightthemotionoftangibleobjects,withthevariousdegreesthereof,maybeeasilycollectedfromwhathathbeensaidconcerningthemannerwhereinthatsensedothsuggesttheirvariousdistances,magnitudes,andsituations,Ishallnotenlargeanyfartheronthissubject,butproceedtoconsiderwhatmaybealleged,withgreatestappearanceofreason,againstthepropositionwehaveshewntobetrue。Forwherethereissomuchprejudicetobeencountered,abareandnakeddemonstrationofthetruthwillscarcesuffice。Wemustalsosatisfythescruplesthatmenmayraiseinfavouroftheirpreconceivednotions,shewwhencethemistakearises,howitcametospread,andcarefullydiscloseandrootoutthosefalsepersuasionsthatanearlyprejudicemighthaveimplantedinthemind。
139。First,therefore,itwillbedemandedhowvisibleextensionandfigurescometobecalledbythesamenamewithtangibleextensionandfigures,iftheyarenotofthesamekindwiththem?Itmustbesomethingmorethanhumouroraccidentthatcouldoccasionacustomsoconstantanduniversalasthis,whichhasobtainedinallagesandnationsoftheworld,andamongstallranksofmen,thelearnedaswellastheilliterate。
140。TowhichIanswer,wecannomoreargueavisibleandtangiblesquaretobeofthesamespeciesfromtheirbeingcalledbythesamename,thanwecanthatatangiblesquareandthemonosyllableconsistingofsixletterswherebyitismarkedareofthesamespeciesbecausetheyarebothcalledbythesamename。Itiscustomarytocallwrittenwordsandthethingstheysignifybythesamename:forwordsnotbeingregardedintheirownnature,orotherwisethanastheyaremarksofthings,ithadbeensuperfluous,andbesidethedesignoflanguage,tohavegiventhemnamesdistinctfromthoseofthethingsmarkedbythem。Thesamereasonholdsherealso。Visiblefiguresarethemarksoftangiblefigures,andfromsect。59itisplainthatinthemselvestheyarelittleregarded,oruponanyotherscorethanfortheirconnexionwithtangiblefigures,whichbynaturetheyareordainedtosignify。Andbecausethislanguageofnaturedothnotvaryindifferentagesornations,henceitisthatinalltimesandplacesvisiblefiguresarecalledbythesamenamesastherespectivetangiblefiguressuggestedbythem,andnotbecausetheyarealikeorofthesamesortwiththem。
141。But,sayyou,surelyatangiblesquareislikertoavisiblesquarethantoavisiblecircle:ithasfouranglesandasmanysides:soalsohasthevisiblesquare:butthevisiblecirclehasnosuchthing,beingboundedbyoneuniformcurvewithoutrightlinesorangles,whichmakesitunfittorepresentthetangiblesquarebutveryfittorepresentthetangiblecircle。Whenceitclearlyfollowsthatvisiblefiguresarepatternsof,orofthesamespecieswith,therespectivetangiblefiguresrepresentedbythem:thattheyarelikeuntothem,andoftheirownnaturefittedtorepresentthem,asbeingofthesamesort:andthattheyareinnorespectarbitrarysigns,aswords。
142。Ianswer,itmustbeacknowledgedthevisiblesquareisfitterthanthevisiblecircletorepresentthetangiblesquare,butthenitisnotbecauseitisliker,ormoreofaspecieswithit,butbecausethevisiblesquarecontainsinitseveraldistinctparts,wherebytomarktheseveraldistinctcorrespondingpartsofatangiblesquare,whereasthevisiblecircledothnot。Thesquareperceivedbytouchhathfourdistinct,equalsides,soalsohathitfourdistinctequalangles。Itisthereforenecessarythatthevisiblefigurewhichshallbemostpropertomarkitcontainfourdistinctequalpartscorrespondingtothefoursidesofthetangiblesquare,aslikewisefourotherdistinctandequalpartswherebytodenotethefourequalanglesofthetangiblesquare。Andaccordinglyweseethevisiblefigurescontaininthemdistinctvisibleparts,answeringtothedistincttangiblepartsofthefiguressignifiedorsuggestedbythem。
143。Butitwillnothencefollowthatanyvisiblefigureislikeunto,orofthesamespecieswith,itscorrespondingtangiblefigure,unlessitbealsoshewnthatnotonlythenumberbutalsothekindofthepartsbethesameinboth。Toillustratethis,Iobservethatvisiblefiguresrepresenttangiblefiguresmuchafterthesamemannerthatwrittenwordsdosounds。Now,inthisrespectwordsarenotarbitrary,itnotbeingindifferentwhatwrittenwordstandsforanysound:butitisrequisitethateachwordcontaininitsomanydistinctcharactersastherearevariationsinthesounditstandsfor。Thusthesingleletteraispropertomarkonesimpleuniformsound;andthewordadulteryisaccommodatedtorepresentthesoundannexedtoit,intheformationwhereoftherebeingeightdifferentcollisionsormodificationsoftheairbytheorgansofspeech,eachofwhichproducesadifferenceofsound,itwasfitthewordrepresentingitshouldconsistofasmanydistinctcharacters,therebytomarkeachparticulardifferenceorpartofthewholesound。Andyetnobody,Ipresume,willsaythesinglelettera,orthewordadultery,arelikeunto,orofthesamespecieswith,therespectivesoundsbythemrepresented。Itisindeedarbitrarythat,ingeneral,lettersofanylanguagerepresentsoundsatall:butwhenthatisonceagreed,itisnotarbitrarywhatcombinationoflettersshallrepresentthisorthatparticularsound。Ileavethiswiththereadertopursue,andapplyitinhisownthoughts。
144。Itmustbeconfessedthatwearenotsoapttoconfoundothersignswiththethingssignified,ortothinkthemofthesamespecies,aswearevisibleandtangibleideas。Butalittleconsiderationwillshewushowthismaybewithoutoursupposingthemofalikenature。Thesesignsareconstantanduniversal,theirconnexionwithtangibleideashasbeenlearntatourfirstentranceintotheworld;andeversince,almosteverymomentofourlives,ithasbeenoccurringtoourthoughts,andfasteningandstrikingdeeperonourminds。Whenweobservethatsignsarevariable,andofhumaninstitution;whenweremembertherewasatimetheywerenotconnectedinourmindswiththosethingstheynowsoreadilysuggest;butthattheirsignificationwaslearnedbytheslowstepsofexperience:thispreservesusfromconfoundingthem。Butwhenwefindthesamesignssuggestthesamethingsallovertheworld;whenweknowtheyarenotofhumaninstitution,andcannotrememberthatweeverlearnedtheirsignification,butthinkthatatfirstsighttheywouldhavesuggestedtousthesamethingstheydonow:allthispersuadesustheyareofthesamespeciesasthethingsrespectivelyrepresentedbythem,andthatitisbyanaturalresemblancetheysuggestthemtoourminds。
145。Addtothisthatwheneverwemakeanicesurveyofanyobject,successivelydirectingtheopticaxistoeachpointthereof,therearecertainlinesandfiguresdescribedbythemotionoftheheadoreye,whichbeingintruthperceivedbyfeeling,doneverthelesssomixthemselves,asitwere,withtheideasofsight,thatwecanscarcethinkbuttheyappertaintothatsense。Again,theideasofsightenterintothemindseveralatonce,moredistinctandunmingledthanisusualintheothersensesbesidethetouch。Sounds,forexample,perceivedatthesameinstant,areapttocoalesce,ifImaysosay,intoonesound:butwecanperceiveatthesametimegreatvarietyofvisibleobjects,veryseparateanddistinctfromeachother。Nowtangibleextensionbeingmadeupofseveraldistinctcoexistentparts,wemayhencegatheranotherreasonthatmaydisposeustoimaginealikenessorananalogybetweentheimmediateobjectsofsightandtouch。Butnothing,certainly,dothmorecontributetoblendandconfoundthemtogetherthanthestrictandcloseconnexiontheyhavewitheachother。
Wecannotopenoureyesbuttheideasofdistance,bodies,andtangiblefiguresaresuggestedbythem。Soswiftandsuddenandunperceivedisthetransitionfromvisibletotangibleideasthatwecanscarceforbearthinkingthemequallytheimmediateobjectofvision。
146。Theprejudicewhichisgroundedonthese,andwhateverothercausesmaybeassignedthereof,stickssofastthatitisimpossiblewithoutobstinatestrivingandlabourofthemindtogetentirelyclearofit。Butthenthereluctancywefindinrejectinganyopinioncanbenoargumentofitstruthtowhoeverconsiderswhathasbeenalreadyshewnwithregardtotheprejudicesweentertainconcerningthedistance,magnitude,andsituationofobjects;
prejudicessofamiliartoourminds,soconfirmedandinveterate,astheywillhardlygivewaytotheclearestdemonstration。
147。Uponthewhole,IthinkwemayfairlyconcludethattheproperobjectsofvisionconstituteanuniversallanguageoftheAuthorofNature,wherebyweareinstructedhowtoregulateouractionsinordertoattainthosethingsthatarenecessarytothepreservationandwell—beingofourbodies,asalsotoavoidwhatevermaybehurtfulanddestructiveofthem。
Itisbytheirinformationthatweareprincipallyguidedinallthetransactionsandconcernsoflife。Andthemannerwhereintheysignifyandmarkuntoustheobjectswhichareatadistanceisthesamewiththatoflanguagesandsignsofhumanappointment,whichdonotsuggestthethingssignifiedbyanylikenessoridentityofnature,butonlybyanhabitualconnexionthatexperiencehasmadeustoobservebetweenthem。
148。Supposeonewhohadalwayscontinuedblindbetoldbyhisguidethatafterhehasadvancedsomanystepsheshallcometothebrinkofaprecipice,orbestoppedbyawall;mustnotthistohimseemveryadmirableandsurprizing?Hecannotconceivehowitispossibleformortalstoframesuchpredictionsasthese,whichtohimwouldseemasstrangeandunaccountableasprophesydothtoothers。Eventheywhoareblessedwiththevisivefacultymay(thoughfamiliaritymakeitlessobserved)findthereinsufficientcauseofadmiration。Thewonderfulartandcontrivancewherewithitisadjustedtothoseendsandpurposesforwhichitwasapparentlydesigned,thevastextent,number,andvarietyofobjectsthatareatoncewithsomucheaseandquicknessandpleasuresuggestedbyit:alltheseaffordsubjectformuchandpleasingspeculation,andmay,ifanything,giveussomeglimmeringanalogouspræ;notionofthingswhichareplacedbeyondthecertaindiscoveryandcomprehensionofourpresentstate。
149。IdonotdesigntotroublemyselfwithdrawingcorollariesfromthedoctrineIhavehithertolaiddown。Ifitbearsthetestothersmay,sofarastheyshallthinkconvenient,employtheirthoughtsinextendingitfarther,andapplyingittowhateverpurposesitmaybesubservientto:only,Icannotforbearmakingsomeinquiryconcerningtheobjectofgeometry,whichthesubjectwehavebeenupondothnaturallyleadoneto。
Wehaveshewnthereisnosuchideaasthatofextensioninabstract,andthattherearetwokindsofsensibleextensionandfigureswhichareentirelydistinctandheterogeneousfromeachother。Now,itisnaturaltoinquirewhichoftheseistheobjectofgeometry。
150。Somethingstherearewhichatfirstsightinclineonetothinkgeometryconversantaboutvisibleextension。Theconstantuseoftheeyes,bothinthepracticalandspeculativepartsofthatscience,dothverymuchinduceusthereto。Itwould,withoutdoubt,seemoddtoamathematiciantogoabouttoconvincehimthediagramshesawuponpaperwerenotthefigures,oreventhelikenessofthefigures,whichmakethesubjectofthedemonstration。Thecontrarybeingheldanunquestionabletruth,notonlybymathematicians,butalsobythosewhoapplythemselvesmoreparticularlytothestudyoflogic;Imean,whoconsiderthenatureofscience,certainty,anddemonstration:itbeingbythemassignedasonereasonoftheextraordinaryclearnessandevidenceofgeometrythatinthissciencethereasoningsarefreefromthoseinconvenienceswhichattendtheuseofarbitrarysigns,theveryideasthemselvesbeingcopiedoutandexposedtoviewuponpaper。
But,bythebye,howwellthisagreeswithwhattheylikewiseassertofabstractideasbeingtheobjectofgeometricaldemonstrationIleavetobeconsidered。
151。Tocometoaresolutioninthispointweneedonlyobservewhathathbeensaidinsect。59,60,61,whereitisshewnthatvisibleextensionsinthemselvesarelittleregarded,andhavenosettleddeterminablegreatness,andthatmenmeasurealtogether,bytheapplicationoftangibleextensiontotangibleextension。Allwhichmakesitevidentthatvisibleextensionandfiguresarenottheobjectofgeometry。
152。Itisthereforeplainthatvisiblefigureareofthesameuseingeometrythatwordsare:andtheonemayaswellbeaccountedtheobjectofthatscienceastheother,neitherofthembeingotherwiseconcernedthereinthanastheyrepresentorsuggesttothemindtheparticulartangiblefiguresconnectedwiththem。Thereisindeedthisdifferencebetweenthesignificationoftangiblefiguresbyvisiblefigures,andofideasbywords:
thatwhereasthelatterisvariableanduncertain,dependingaltogetheronthearbitraryappointmentofmen,theformerisfixedandimmutablythesameinalltimesandplaces。Avisiblesquare,forinstance,suggeststothemindthesametangiblefigureinEuropethatitdothinAmerica。
HenceitisthatthevoiceoftheAuthorof’Naturewhichspeakstooureyes,isnotliabletothatmisinterpretationandambiguitythatlanguagesofhumancontrivanceareunavoidablysubjectto。
153。Thoughwhathasbeensaidmaysufficetoshewwhatoughttobedeterminedwithrelationtotheobjectofgeometry,Ishallnevertheless,forthefullerillustrationthereof,considerthecaseofanintelligence,orunbodiedspirit,whichissupposedtoseeperfectlywell,i。e。tohaveaclearperceptionoftheproperandimmediateobjectsofsight,buttohavenosenseoftouch。WhethertherebeanysuchbeinginNatureornoisbesidemypurposetoinquire。Itsufficeththatthesuppositioncontainsnocontradictioninit。Letusnowexaminewhatproficiencysuchaonemaybeabletomakeingeometry。Whichspeculationwillleadusmoreclearlytoseewhethertheideasofsightcanpossiblybetheobjectofthatscience。
154。First,then,itiscertaintheaforesaidintelligencecouldhavenoideaofasolid,orquantityofthreedimensions,whichfollowethfromitsnothavinganyideaofdistance。Weindeedarepronetothinkthatwehavebysighttheideasofspaceandsolids,whicharisethfromourimaginingthatwedo,strictlyspeaking,seedistanceandsomepartsofanobjectatagreaterdistancethanothers;whichhathbeendemonstratedtobetheeffectoftheexperiencewehavehad,whatideasoftouchareconnectedwithsuchandsuchideasattendingvision:buttheintelligenceherespokenofissupposedtohavenoexperienceoftouch。Hewouldnot,therefore,judgeaswedo,norhaveanyideaofdistance,outness,orprofundity,norconsequentlyofspaceorbody,eitherimmediatelyorbysuggestion。
Whenceitisplainhecanhavenonotionofthosepartsofgeometrywhichrelatetothemensurationofsolidsandtheirconvexorconcavesurfaces,andcontemplatethepropertiesoflinesgeneratedbythesectionofasolid。
Theconceivingofanypartwhereofisbeyondthereachofhisfaculties。
155。Farther,hecannotcomprehendthemannerwhereingeometersdescribearightlineorcircle;theruleandcompasswiththeirusebeingthingsofwhichitisimpossibleheshouldhaveanynotion:norisitaneasiermatterforhimtoconceivetheplacingofoneplaneorangleonanother,inordertoprovetheirequality:sincethatsupposethsomeideaofdistanceorexternalspace。Allwhichmakesitevidentourpureintelligencecouldneverattaintoknowsomuchasthefirstelementsofplanegeometry。Andperhapsuponaniceinquiryitwillbefoundhecannotevenhaveanideaofplanefiguresanymorethanhecanofsolids;sincesomeideaofdistanceisnecessarytoformtheideaofageometricalplane,aswillappeartowhoevershallreflectalittleonit。
156。Allthatisproperlyperceivedbythevisivefacultyamountstonomorethancolours,withtheirvariationsanddifferentproportionsoflightandshade。Buttheperpetualmutabilityandfleetingnessofthoseimmediateobjectsofsightrenderthemincapableofbeingmanagedafterthemannerofgeometricalfigures;norisitinanydegreeusefulthattheyshould。Itistruetherearediversofthemperceivedatonce,andmoreofsomeandlessofothers:butaccuratelytocomputetheirmagnitudeandassignprecisedeterminateproportionsbetweenthingssovariableandinconstant,ifwesupposeitpossibletobedone,mustyetbeaverytriflingandinsignificantlabour。
157。Imustconfessmenaretemptedtothinkthatflatorplanefiguresareimmediateobjectsofsight,thoughtheyacknowledgesolidsarenot。
Andthisopinionisgroundedonwhatisobservedinpainting,wherein(itseems)theideasimmediatelyimprintedonthemindareonlyofplanesvariouslycoloured,whichbyasuddenactofthejudgmentarechangedintosolids。
Butwithalittleattentionweshallfindtheplanesherementionedastheimmediateobjectsofsightarenotvisiblebuttangibleplanes。Forwhenwesaythatpicturesareplanes,wemeantherebythattheyappeartothetouchsmoothanduniform。Butthenthissmoothnessanduniformity,or,inotherwords,thisplanenessofthepicture,isnotperceivedimmediatelybyvision:foritappearethtotheeyevariousandmultiform。
158。Fromallwhichwemayconcludethatplanesarenomoretheimmediateobjectofsightthansolids。Whatwestrictlyseearenotsolids,noryetplanesvariouslycoloured:theyareonlydiversityofcolours。Andsomeofthesesuggesttothemindsolids,andotherplanefigures,justastheyhavebeenexperiencedtobeconnectedwiththeoneortheother:sothatweseeplanesinthesamewaythatweseesolids,bothbeingequallysuggestedbytheimmediateobjectsofsight,whichaccordinglyarethemselvesdenominatedplanesandsolids。Butthoughtheyarecalledbythesamenameswiththethingsmarkedbythem,theyareneverthelessofanatureentirelydifferent,ashathbeendemonstrated。
159。Whathathbeensaidis,ifImistakenot,sufficienttodecidethequestionweproposedtoexamine,concerningtheabilityofapurespirit,suchaswehavedescribed,toknowgeometry。Itis,indeed,noeasymatterforustoenterpreciselyintothethoughtsofsuchanintelligence,becausewecannotwithoutgreatpainscleverlyseparateanddisentangleinourthoughtstheproperobjectsofsightfromthoseoftouchwhichareconnectedwiththem。This,indeed,inacompletedegreeseemsscarcepossibletobeperformed:whichwillnotseemstrangetousifweconsiderhowharditisforanyonetohearthewordsofhisnativelanguagepronouncedinhisearswithoutunderstandingthem。Thoughheendeavourtodisunitethemeaningfromthesound,itwillneverthelessintrudeintohisthoughts,andheshallfinditextremedifficult,ifnotimpossible,toputhimselfexactlyinthepostureofaforeignerthatneverlearnedthelanguage,soastobeaffectedbarelywiththesoundsthemselves,andnotperceivethesignificationannexedtothem。Bythistime,Isuppose,itisclearthatneitherabstractnorvisibleextensionmakestheobjectofgeometry;
thenotdiscerningofwhichmayperhapshavecreatedsomedifficultyanduselesslabourinmathematics。Appendix[7]
Thecensureswhich,Iaminformed,havebeenmadeontheforegoingessayinclinedmetothinkIhadnotbeenclearandexpressenoughinsomepoints,andtopreventbeingmisunderstoodforthefuture,IwaswillingtomakeanynecessaryalterationsoradditionsinwhatIhadwritten。Butthatwasimpracticable,thepresenteditionhavingbeenalmostfinishedbeforeIreceivedthisinformation。WhereforeIthinkitpropertoconsiderinthisplacetheprincipalobjectionsthatarecometomynotice。
Inthefirstplaceit’sobjectedthatinthebeginningoftheessayIargueeitheragainstalluseoflinesandanglesinoptics,andthenwhatIsayisfalse;oragainstthosewritersonlywhowillhaveitthatwecanperceivebysensetheopticaxes,angles,etc。,andthenit’sinsignificant,thisbeinganabsurditywhichnooneeverheld。TowhichIanswerthatIargueonlyagainstthosewhoareofopinionthatweperceivethedistanceofobjectsbylinesandanglesor,astheytermit,byakindofinnategeometry。Andtoshewthatthisisnotfightingwithmyownshadow,IshallheresetdownapassagefromthecelebratedDescartes。
Distantiampraetereadiscimus,permutuamquandamconspirationemoculorum。UtenimcaecusnosterduobacillatenensAEetCE,dequorumlongitudineincercus,solumqueintervallummanuumAetC,cummagnitudineangulorumACE,etCAEexploratumhabens,inde,utexgeometriaquadamomnibusinnata,scirepotestubisitpunctumE。SicquumnostrioculiRSTetrstambo,vertunturadX,magnitudolineaeSs,etangulorumXSsetXsS,certosnosreduntubisitpunctumX。Etidemoperaalterutriuspossumusindagare,locoillummovendo,utsiversusXillumsemperdirigentes,primosistamusinpunctoS,etstatimpostinpunctos,hocsufficietutmagnitudolineaeSs,etduorumangulorumXSsetXsS
nostraeimaginationisimuloccurrant,etdistantiampunctiXnosedoceant;
idqueperactionemmentis,quaelicetsimplexjudiciumessevideatur,ratiocinationemtamenquandaminvolutamhabet,similemilli,quageometraeperduasstationesdiversas,locainaccessadimetiuntur。[8]Imightamasstogethercitationsfromseveralauthorstothesamepurpose,butthisbeingsoclearinthepoint,andfromanauthorofsogreatnote,Ishallnottroublethereaderwithanymore。WhatIhavesaidonthisheadwasnotforthesakeoffindingfaultwithothermen,butbecauseIjudgeditnecessarytodemonstrateinthefirstplacethatweneitherseedistanceimmediately,noryetperceiveitbythemediationofanythingthathath(aslinesandangles)anecessaryconnexionwithit。Foronthedemonstrationofthispointthewholetheorydepends。
Secondly,itisobjectedthattheexplicationIgiveoftheappearanceofthehorizontalmoon(whichmayalsobeappliedtothesun)isthesamethatGassendushadgivenbefore。Ianswer,thereisindeedmentionmadeofthegrossnessoftheatmosphereinboth,butthenthemethodswhereinitisappliedtosolvethe:phenomenonarewidelydifferent,aswillbeevidenttowhoever,shallcomparewhatIhavesaidonthissubjectwiththefollowingwordsofGassendus。Heincdicipossevidetur:solemhumilemoculospeaatumideoappareremajorem,quamdumaltiusegreditur,quiadumvicinusesthorizontiprolixaestsenesvaporum,atqueadeocorpusculorumquaesolisradiositaretundunt,utoculusminusconniveat,etpupillaquasiumbrefactalongemagisamplificetur,quamdumsolemultumelatorarivaporesintercipiuntur,solqueipseitasplendescit,utpupillainipsumspeaanscontractissimaefficiatur。Nempeexhocessevidetur,curvisibilisspeciesexsoleprocedens,etperpupillamamplificatamintromissainretinam,amplioreminillasedemoccupet,majoremqueproindecreetsolisapparentiam,quamdumperconttactampupillameodemintromissacontendit(vid。Epist。IdeapparenteMagnitudinesolishumilisetsublimis,page6)。[9]ThissolutionofGassendusproceedsonafalseprinciple,viz。,thatthepupil’sbeingenlargedaugmentsthespeciesorimageonthefundoftheeye。
Thirdly,againstwhatissaidinsect。80,itisobjectedthatthemethingwhichissosmallasscarcetobediscernedbyamanmayappearlikeamountaintosomesmallinsect;fromwhichitfollowthattheminimumvisibileisnotequalinrespectofallcreatures。Ianswer,ifthisobjectionbesoundedtothebottomitwillbefoundtomeannomorethanthatthesameparticleofmatter,whichismarkedtoamanbyoneminimumvisibile,exhibitstoaninsectagreatnumberofminimavisibilia。
Butthisdoesnotprovethatoneminimumvisibileoftheinsectisnotequaltooneminimumvisibileoftheman。Thenotdistinguishingbetweenthemediateandimmediateobjectsofsightis,Isuspect,acauseofmisapprehensioninthismatter。
Someothermisinterpretationsanddifficultieshavebeenmade,butinthepointstheyreferto1haveendeavouredtobesoveryplainthatI
knownothowtoexpressmyselfmoreclearly。AllIshalladdisthatiftheywhoarepleasedtocriticiseonmyessaywouldbutreadthewholeoverwithsomeattention,theymightbethebetterabletocomprehendmymeaningandconsequentlytojudgeofmymistakes。
Iaminformedthat,soonafterthefirsteditionofthistreatiseamansomewherenearLondonwasmadetosee,whohadbeenbornblind,andcontinuedsoforabouttwentyyears。Suchaonemaybesupposedaproperjudgetodecidehowfarsometenetslaiddowninseveralplacesoftheforegoingessayareagreeabletotruth,andifanycuriouspersonhaththeopportunityofmakingproperinterrogatoriestohimthereon,Ishouldgladlyseemynotionseitheramendedorconfirmedbyexperience。
Footnotes[1]SeewhatDecartesandothershavewrittenonthissubject。
[2]Par。I。Prop。31,Sect。9。
[3]MolyneuxDioptr。,Par。I。Prop。5。
[4]Phil。Trans。Num。187。p。314
[5]Numb。187。P。323
[6]Diopt。par。2。c。7。P。289。
[7]ClassicsEditor’snote:Thisappendixappearedinthe2ndeditiononly(1709)。
[8]Weapprehenddistance,moreover,throughasortofjointactivityoftheeyes。Forinthesamewayasourblindman,holdingtwosticksofindeterminatelength,AEandCE,andknowingonlythedistancebetweenhishands,AandC,togetherwiththesizeoftheanglesACEandCAE,canthencedeterminethepositionofEbyasortofinnategeometricalknowledgesharedbyallmen,so,whenbothoureyes,RSTandrst,arefocusedonX,thelengthofthelineSsandthesizeoftheanglesXSsandXsSletusknowthepositionofthepointX。Wecanalsodiscoverthatpositionbymeansofeitheroneofoureyesalone,bychangingitslocation。IfwekeeptheeyefixedonXandholditfirstatpointSandthenimmediatelyafterwardsatpoints,thatwillbeenoughforthelengthofthelineSsandthesizeoftheanglesXSsandXsStobepresenttogetherintheimaginationandthustoinformusofthedistanceofthepointX。Theydosoinvirtueofanactofthemindwhich,whileitmayseemtobeasimplejudgment,neverthelessincludeswithinitselfacertainreasoningprocesslikethatbywhichgeometerscalculateinaccessiblepositionsfromtwoseparategivenpoints。[FromDescartes’Dioptrics,VI,13。]
[9]Thetruth,then,seemstobeasfollows:thereasonwhythesun,whenitislow,appearstotheeyetobelargerthanwhenithasclimbedhigherisbecause,aslongasitisneartothehorizon,the[interveningllayerofvapourisdeeper,andtheatomssodullthebrightnessofthesun’sraysthattheeyeblinksless。Forthepupilisasifshadedandisfarmoredilatedthanwhenthesunishighinthesky:
thenathinnerlayerofvapourintervenesandthesunitselfshinessobrightlythat,inlookingtowardsit,thepupilclosesupandbecomeshighlycontracted。Doubtlessthisistheexplanationwhythevisiblespeciescomingfromthesun,whenitreachestheretinathroughadilatedpupil,occupiesalargerplaceonitandsocreatestheappearanceofalargersunthanwhenitstrikestheretinaafterenteringbythesameroutebutthroughacontractededpupil。