第45章
加入书架 A- A+
点击下载App,搜索"METAPHYSICS",免费读到尾

  But,further,allotherthingscannotcomefromtheFormsinany

  oftheusualsensesof’from’。Andtosaythattheyarepatternsand

  theotherthingsshareinthemistouseemptywordsandpoetical

  metaphors。Forwhatisitthatworks,lookingtotheIdeas?Andany

  thingcanbothbeandcomeintobeingwithoutbeingcopiedfrom

  somethingelse,sothat,whetherSocratesexistsornot,amanlike

  Socratesmightcometobe。Andevidentlythismightbesoevenif

  Socrateswereeternal。Andtherewillbeseveralpatternsofthe

  samething,andthereforeseveralForms;e。g。’animal’and

  ’two-footed’,andalso’man-himself’,willbeFormsofman。Again,the

  Formsarepatternsnotonlyofsensiblethings,butofForms

  themselvesalso;i。e。thegenusisthepatternofthevarious

  forms-of-a-genus;thereforethesamethingwillbepatternandcopy。

  Again,itwouldseemimpossiblethatsubstanceandthatwhose

  substanceitisshouldexistapart;how,therefore,couldtheIdeas,

  beingthesubstancesofthings,existapart?

  InthePhaedothecaseisstatedinthisway-thattheFormsare

  causesbothofbeingandofbecoming。YetthoughtheFormsexist,

  stillthingsdonotcomeintobeing,unlessthereissomethingto

  originatemovement;andmanyotherthingscomeintobeinge。g。a

  houseoraringofwhichtheysaytherearenoForms。Clearly

  thereforeeventhethingsofwhichtheysaythereareIdeascanboth

  beandcomeintobeingowingtosuchcausesasproducethethingsjust

  mentioned,andnotowingtotheForms。ButregardingtheIdeasitis

  possible,bothinthiswayandbymoreabstractandaccurate

  arguments,tocollectmanyobjectionslikethosewehaveconsidered。

  Sincewehavediscussedthesepoints,itiswelltoconsideragain

  theresultsregardingnumberswhichconfrontthosewhosaythat

  numbersareseparablesubstancesandfirstcausesofthings。Ifnumber

  isanentityanditssubstanceisnothingotherthanjustnumber,as

  somesay,itfollowsthateither1thereisafirstinitanda

  second,eachbeingdifferentinspecies,-andeitherathisistrue

  oftheunitswithoutexception,andanyunitisinassociablewith

  anyunit,orbtheyareallwithoutexceptionsuccessive,andanyof

  themareassociablewithany,astheysayisthecasewith

  mathematicalnumber;forinmathematicalnumbernooneunitisin

  anywaydifferentfromanother。Orcsomeunitsmustbeassociable

  andsomenot;e。g。supposethat2isfirstafter1,andthencomes3

  andthentherestofthenumberseries,andtheunitsineachnumber

  areassociable,e。g。thoseinthefirst2areassociablewithone

  another,andthoseinthefirst3withoneanother,andsowiththe

  othernumbers;buttheunitsinthe’2-itself’areinassociablewith

  thoseinthe’3-itself’;andsimilarlyinthecaseoftheother

  successivenumbers。Andsowhilemathematicalnumberiscounted

  thus-after1,2whichconsistsofanother1besidestheformer1,

  and3whichconsistsofanother1besidesthesetwo,andtheother

  numberssimilarly,idealnumberiscountedthus-after1,adistinct

  2whichdoesnotincludethefirst1,anda3whichdoesnotinclude

  the2andtherestofthenumberseriessimilarly。Or2onekind

  ofnumbermustbelikethefirstthatwasnamed,onelikethatwhich

  themathematiciansspeakof,andthatwhichwehavenamedlastmustbe

  athirdkind。

  Again,thesekindsofnumbersmusteitherbeseparablefrom

  things,ornotseparablebutinobjectsofperceptionnothowever

  inthewaywhichwefirstconsidered,inthesensethatobjectsof

  perceptionconsistsofnumberswhicharepresentinthem-eitherone

  kindandnotanother,orallofthem。

  Theseareofnecessitytheonlywaysinwhichthenumberscan

  exist。Andofthosewhosaythatthe1isthebeginningand

  substanceandelementofallthings,andthatnumberisformedfrom

  the1andsomethingelse,almosteveryonehasdescribednumberinone

  oftheseways;onlynoonehassaidalltheunitsareinassociable。

  Andthishashappenedreasonablyenough;fortherecanbenoway

  besidesthosementioned。Somesaybothkindsofnumberexist,that

  whichhasabeforeandafterbeingidenticalwiththeIdeas,and

  mathematicalnumberbeingdifferentfromtheIdeasandfromsensible

  things,andbothbeingseparablefromsensiblethings;andothers

  saymathematicalnumberaloneexists,asthefirstofrealities,

  separatefromsensiblethings。AndthePythagoreans,also,believe

  inonekindofnumber-themathematical;onlytheysayitisnot

  separatebutsensiblesubstancesareformedoutofit。Forthey

  constructthewholeuniverseoutofnumbers-onlynotnumbers

  consistingofabstractunits;theysupposetheunitstohavespatial

  magnitude。Buthowthefirst1wasconstructedsoastohave

  magnitude,theyseemunabletosay。

  Anotherthinkersaysthefirstkindofnumber,thatofthe

  Forms,aloneexists,andsomesaymathematicalnumberisidentical

  withthis。

  Thecaseoflines,planes,andsolidsissimilar。Forsomethink

  thatthosewhicharetheobjectsofmathematicsaredifferentfrom

  thosewhichcomeaftertheIdeas;andofthosewhoexpress

  themselvesotherwisesomespeakoftheobjectsofmathematicsandina

  mathematicalway-viz。thosewhodonotmaketheIdeasnumbersnor

  saythatIdeasexist;andothersspeakoftheobjectsof

  mathematics,butnotmathematically;fortheysaythatneitheris

  everyspatialmagnitudedivisibleintomagnitudes,nordoanytwo

  unitstakenatrandommake2。Allwhosaythe1isanelementand

  principleofthingssupposenumberstoconsistofabstractunits,

  exceptthePythagoreans;buttheysupposethenumberstohave

  magnitude,ashasbeensaidbefore。Itisclearfromthisstatement,

  then,inhowmanywaysnumbersmaybedescribed,andthatalltheways

  havebeenmentioned;andalltheseviewsareimpossible,butsome

  perhapsmorethanothers。

  First,then,letusinquireiftheunitsareassociableor

  inassociable,andifinassociable,inwhichofthetwowayswe

  distinguished。Foritispossiblethatanyunityisinassociable

  withany,anditispossiblethatthoseinthe’itself’are

  inassociablewiththoseinthe’itself’,and,generally,thatthosein

  eachidealnumberareinassociablewiththoseinotherideal

  numbers。Now1allunitsareassociableandwithoutdifference,we

  getmathematicalnumber-onlyonekindofnumber,andtheIdeas

  cannotbethenumbers。Forwhatsortofnumberwillman-himselfor

  animal-itselforanyotherFormbe?ThereisoneIdeaofeachthing

  e。g。oneofman-himselfandanotheroneofanimal-itself;butthe

  similarandundifferentiatednumbersareinfinitelymany,sothat

  anyparticular3isnomoreman-himselfthananyother3。Butifthe

  Ideasarenotnumbers,neithercantheyexistatall。Forfromwhat

  principleswilltheIdeascome?Itisnumberthatcomesfromthe1and

  theindefinitedyad,andtheprinciplesorelementsaresaidtobe

  principlesandelementsofnumber,andtheIdeascannotberankedas

  eitherpriororposteriortothenumbers。

  But2iftheunitsareinassociable,andinassociableinthe

  sensethatanyisinassociablewithanyother,numberofthissort

  cannotbemathematicalnumber;formathematicalnumberconsistsof

  undifferentiatedunits,andthetruthsprovedofitsuitthis

  character。Norcanitbeidealnumber。For2willnotproceed

  immediatelyfrom1andtheindefinitedyad,andbefollowedbythe

  successivenumbers,astheysay’2,3,4’fortheunitsintheidealare

  generatedatthesametime,whether,asthefirstholderofthetheory

  said,fromunequalscomingintobeingwhenthesewereequalizedor

  insomeotherway-since,ifoneunitistobepriortotheother,it

  willbeprioralsoto2thecomposedofthese;forwhenthereisone

  thingpriorandanotherposterior,theresultantofthesewillbe

  priortooneandposteriortotheother。

  Again,sincethe1-itselfis

  first,andthenthereisaparticular1whichisfirstamongthe

  othersandnextafterthe1-itself,andagainathirdwhichisnext

  afterthesecondandnextbutoneafterthefirst1,-sotheunitsmust

  bepriortothenumbersafterwhichtheyarenamedwhenwecountthem;

  e。g。therewillbeathirdunitin2before3exists,andafourthand

  afifthin3beforethenumbers4and5exist-Nownoneofthese

  thinkershassaidtheunitsareinassociableinthisway,but

  accordingtotheirprinciplesitisreasonablethattheyshouldbe

  soeveninthisway,thoughintruthitisimpossible。Foritis

  reasonableboththattheunitsshouldhavepriorityandposteriority

  ifthereisafirstunitorfirst1,andalsothatthe2’sshouldif

  thereisafirst2;forafterthefirstitisreasonableandnecessary

  thatthereshouldbeasecond,andifasecond,athird,andsowith

  theotherssuccessively。Andtosayboththingsatthesametime,

  thataunitisfirstandanotherunitissecondaftertheideal1,and

  thata2isfirstafterit,isimpossible。Buttheymakeafirstunit

  or1,butnotalsoasecondandathird,andafirst2,butnotalsoa

  secondandathird。Clearly,also,itisnotpossible,ifallthe

  unitsareinassociable,thatthereshouldbea2-itselfanda

  3-itself;andsowiththeothernumbers。Forwhethertheunitsare

  undifferentiatedordifferenteachfromeach,numbermustbecounted

  byaddition,e。g。2byaddinganother1totheone,3byadding

  another1tothetwo,andsimilarly。Thisbeingso,numberscannot

  begeneratedastheygeneratethem,fromthe2andthe1;for2

  becomespartof3and3of4andthesamehappensinthecaseofthe

  succeedingnumbers,buttheysay4camefromthefirst2andthe

  indefinitewhichmakesittwo2’sotherthanthe2-itself;ifnot,the

  2-itselfwillbeapartof4andoneother2willbeadded。And

  similarly2willconsistofthe1-itselfandanother1;butifthisis

  so,theotherelementcannotbeanindefinite2;foritgenerates

  oneunit,not,astheindefinite2does,adefinite2。

  Again,besidesthe3-itselfandthe2-itselfhowcantherebe

  other3’sand2’s?Andhowdotheyconsistofpriorandposterior

  units?Allthisisabsurdandfictitious,andtherecannotbea

  first2andthena3-itself。Yettheremust,ifthe1andthe

  indefinitedyadaretobetheelements。Butiftheresultsare

  impossible,itisalsoimpossiblethatthesearethegenerating

  principles。

  Iftheunits,then,aredifferentiated,eachfromeach,these

  resultsandotherssimilartothesefollowofnecessity。But3if

  thoseindifferentnumbersaredifferentiated,butthoseinthesame

  numberarealoneundifferentiatedfromoneanother,evensothe

  difficultiesthatfollowarenoless。E。g。inthe10-itselftheir

  aretenunits,andthe10iscomposedbothofthemandoftwo5’s。But

  sincethe10-itselfisnotanychancenumbernorcomposedofany

  chance5’s——or,forthatmatter,units——theunitsinthis10must

  differ。Foriftheydonotdiffer,neitherwillthe5’sofwhichthe

  10consistsdiffer;butsincethesediffer,theunitsalsowill

  differ。Butiftheydiffer,willtherebenoother5’sinthe10but

  onlythesetwo,orwilltherebeothers?Iftherearenot,thisis

  paradoxical;andifthereare,whatsortof10willconsistofthem?

  Forthereisnootherinthe10butthe10itself。Butitis

  actuallynecessaryontheirviewthatthe4shouldnotconsistof

  anychance2’s;fortheindefiniteastheysay,receivedthe

  definite2andmadetwo2’s;foritsnaturewastodoublewhatit

  received。

  Again,astothe2beinganentityapartfromitstwounits,and

  the3anentityapartfromitsthreeunits,howisthispossible?

  Eitherbyone’ssharingintheother,as’paleman’isdifferent

  from’pale’and’man’foritsharesinthese,orwhenoneisa

  differentiaoftheother,as’man’isdifferentfrom’animal’and

  ’two-footed’。

  Again,somethingsareonebycontact,somebyintermixture,

  somebyposition;noneofwhichcanbelongtotheunitsofwhichthe2

  orthe3consists;butastwomenarenotaunityapartfromboth,

  somustitbewiththeunits。Andtheirbeingindivisiblewillmakeno

  differencetothem;forpointstooareindivisible,butyetapair

  ofthemisnothingapartfromthetwo。

点击下载App,搜索"METAPHYSICS",免费读到尾