第44章
加入书架 A- A+
点击下载App,搜索"METAPHYSICS",免费读到尾

  Forjustastheuniversalpropositionsofmathematicsdealnot

  withobjectswhichexistseparately,apartfromextendedmagnitudes

  andfromnumbers,butwithmagnitudesandnumbers,nothoweverqua

  suchastohavemagnitudeortobedivisible,clearlyitispossible

  thatthereshouldalsobebothpropositionsanddemonstrationsabout

  sensiblemagnitudes,nothoweverquasensiblebutquapossessedof

  certaindefinitequalities。Forastherearemanypropositionsabout

  thingsmerelyconsideredasinmotion,apartfromwhateachsuchthing

  isandfromtheiraccidents,andasitisnotthereforenecessarythat

  thereshouldbeeitheramobileseparatefromsensibles,oradistinct

  mobileentityinthesensibles,sotoointhecaseofmobilesthere

  willbepropositionsandsciences,whichtreatthemhowevernotqua

  mobilebutonlyquabodies,oragainonlyquaplanes,oronlyqua

  lines,orquadivisibles,orquaindivisibleshavingposition,oronly

  quaindivisibles。Thussinceitistruetosaywithoutqualification

  thatnotonlythingswhichareseparablebutalsothingswhichare

  inseparableexistforinstance,thatmobilesexist,itistrue

  alsotosaywithoutqualificationthattheobjectsofmathematics

  exist,andwiththecharacterascribedtothembymathematicians。

  Andasitistruetosayoftheothersciencestoo,without

  qualification,thattheydealwithsuchandsuchasubject-notwith

  whatisaccidentaltoite。g。notwiththepale,ifthehealthything

  ispale,andthesciencehasthehealthyasitssubject,butwith

  thatwhichisthesubjectofeachscience-withthehealthyifit

  treatsitsobjectquahealthy,withmanifquaman:-sotooisit

  withgeometry;ifitssubjectshappentobesensible,thoughitdoes

  nottreatthemquasensible,themathematicalscienceswillnotfor

  thatreasonbesciencesofsensibles-nor,ontheotherhand,of

  otherthingsseparatefromsensibles。Manypropertiesattachtothings

  invirtueoftheirownnatureaspossessedofeachsuchcharacter;

  e。g。thereareattributespeculiartotheanimalquafemaleorqua

  maleyetthereisno’female’nor’male’separatefromanimals;so

  thattherearealsoattributeswhichbelongtothingsmerelyas

  lengthsorasplanes。Andinproportionaswearedealingwith

  thingswhicharepriorindefinitionandsimpler,ourknowledgehas

  moreaccuracy,i。e。simplicity。Thereforeasciencewhichabstracts

  fromspatialmagnitudeismoreprecisethanonewhichtakesitinto

  account;andascienceismostpreciseifitabstractsfrom

  movement,butifittakesaccountofmovement,itismostpreciseif

  itdealswiththeprimarymovement,forthisisthesimplest;andof

  thisagainuniformmovementisthesimplestform。

  Thesameaccountmaybegivenofharmonicsandoptics;forneither

  considersitsobjectsquasightorquavoice,butqualinesand

  numbers;butthelatterareattributespropertotheformer。And

  mechanicstooproceedsinthesameway。Thereforeifwesuppose

  attributesseparatedfromtheirfellowattributesandmakeanyinquiry

  concerningthemassuch,weshallnotforthisreasonbeinerror,any

  morethanwhenonedrawsalineonthegroundandcallsitafootlong

  whenitisnot;fortheerrorisnotincludedinthepremisses。

  Eachquestionwillbebestinvestigatedinthisway-bysetting

  upbyanactofseparationwhatisnotseparate,asthe

  arithmeticianandthegeometerdo。Foramanquamanisone

  indivisiblething;andthearithmeticiansupposedoneindivisible

  thing,andthenconsideredwhetheranyattributebelongstoaman

  quaindivisible。Butthegeometertreatshimneitherquamannorqua

  indivisible,butasasolid。Forevidentlythepropertieswhich

  wouldhavebelongedtohimevenifperchancehehadnotbeen

  indivisible,canbelongtohimevenapartfromtheseattributes。Thus,

  then,geometersspeakcorrectly;theytalkaboutexistingthings,

  andtheirsubjectsdoexist;forbeinghastwoforms-itexistsnot

  onlyincompleterealitybutalsomaterially。

  Nowsincethegoodandthebeautifularedifferentfortheformer

  alwaysimpliesconductasitssubject,whilethebeautifulisfound

  alsoinmotionlessthings,thosewhoassertthatthemathematical

  sciencessaynothingofthebeautifulorthegoodareinerror。For

  thesesciencessayandproveagreatdealaboutthem;iftheydonot

  expresslymentionthem,butproveattributeswhicharetheirresults

  ortheirdefinitions,itisnottruetosaythattheytellus

  nothingaboutthem。Thechiefformsofbeautyareorderandsymmetry

  anddefiniteness,whichthemathematicalsciencesdemonstrateina

  specialdegree。Andsincethesee。g。orderanddefinitenessare

  obviouslycausesofmanythings,evidentlythesesciencesmusttreat

  thissortofcausativeprinciplealsoi。e。thebeautifulasin

  somesenseacause。Butweshallspeakmoreplainlyelsewhereabout

  thesematters。

  Somuchthenfortheobjectsofmathematics;wehavesaidthat

  theyexistandinwhatsensetheyexist,andinwhatsensetheyare

  priorandinwhatsensenotprior。Now,regardingtheIdeas,wemust

  firstexaminetheidealtheoryitself,notconnectingitinanyway

  withthenatureofnumbers,buttreatingitintheforminwhichit

  wasoriginallyunderstoodbythosewhofirstmaintainedthe

  existenceoftheIdeas。Thesupportersoftheidealtheorywereledto

  itbecauseonthequestionaboutthetruthofthingstheyacceptedthe

  Heracliteansayingswhichdescribeallsensiblethingsaseverpassing

  away,sothatifknowledgeorthoughtistohaveanobject,theremust

  besomeotherandpermanententities,apartfromthosewhichare

  sensible;fortherecouldbenoknowledgeofthingswhichwereina

  stateofflux。ButwhenSocrateswasoccupyinghimselfwiththe

  excellencesofcharacter,andinconnexionwiththembecamethe

  firsttoraisetheproblemofuniversaldefinitionforofthe

  physicistsDemocritusonlytouchedonthesubjecttoasmallextent,

  anddefined,afterafashion,thehotandthecold;whilethe

  Pythagoreanshadbeforethistreatedofafewthings,whose

  definitions-e。g。thoseofopportunity,justice,ormarriage-they

  connectedwithnumbers;butitwasnaturalthatSocratesshouldbe

  seekingtheessence,forhewasseekingtosyllogize,and’whata

  thingis’isthestarting-pointofsyllogisms;fortherewasasyet

  noneofthedialecticalpowerwhichenablespeopleevenwithout

  knowledgeoftheessencetospeculateaboutcontrariesandinquire

  whetherthesamesciencedealswithcontraries;fortwothingsmay

  befairlyascribedtoSocrates-inductiveargumentsanduniversal

  definition,bothofwhichareconcernedwiththestarting-pointof

  science:-butSocratesdidnotmaketheuniversalsorthe

  definitionsexistapart:they,however,gavethemseparate

  existence,andthiswasthekindofthingtheycalledIdeas。Therefore

  itfollowedforthem,almostbythesameargument,thattheremust

  beIdeasofallthingsthatarespokenofuniversally,anditwas

  almostasifamanwishedtocountcertainthings,andwhiletheywere

  fewthoughthewouldnotbeabletocountthem,butmademoreof

  themandthencountedthem;fortheFormsare,onemaysay,more

  numerousthantheparticularsensiblethings,yetitwasinseeking

  thecausesofthesethattheyproceededfromthemtotheForms。Forto

  eachthingthereanswersanentitywhichhasthesamenameand

  existsapartfromthesubstances,andsoalsointhecaseofallother

  groupsthereisaoneovermany,whetherthesebeofthisworldor

  eternal。

  Again,ofthewaysinwhichitisprovedthattheFormsexist,

  noneisconvincing;forfromsomenoinferencenecessarilyfollows,

  andfromsomeariseFormsevenofthingsofwhichtheythinkthereare

  noForms。Foraccordingtotheargumentsfromthesciencesthere

  willbeFormsofallthingsofwhichtherearesciences,andaccording

  totheargumentofthe’oneovermany’therewillbeFormsevenof

  negations,andaccordingtotheargumentthatthoughthasanobject

  whentheindividualobjecthasperished,therewillbeFormsof

  perishablethings;forwehaveanimageofthese。Again,ofthemost

  accuratearguments,someleadtoIdeasofrelations,ofwhichtheysay

  thereisnoindependentclass,andothersintroducethe’thirdman’。

  AndingeneraltheargumentsfortheFormsdestroythingsfor

  whoseexistencethebelieversinFormsaremorezealousthanforthe

  existenceoftheIdeas;foritfollowsthatnotthedyadbutnumberis

  first,andthatpriortonumberistherelative,andthatthisis

  priortotheabsolute-besidesalltheotherpointsonwhichcertain

  people,byfollowingouttheopinionsheldabouttheForms,came

  intoconflictwiththeprinciplesofthetheory。

  Again,accordingtotheassumptiononthebeliefintheIdeas

  rests,therewillbeFormsnotonlyofsubstancesbutalsoofmany

  otherthings;fortheconceptissinglenotonlyinthecaseof

  substances,butalsointhatofnon-substances,andtherearesciences

  ofotherthingsthansubstance;andathousandothersuchdifficulties

  confrontthem。Butaccordingtothenecessitiesofthecaseandthe

  opinionsabouttheForms,iftheycanbesharedintheremustbeIdeas

  ofsubstancesonly。Fortheyarenotsharedinincidentally,but

  eachFormmustbesharedinassomethingnotpredicatedofa

  subject。By’beingsharedinincidentally’Imeanthatifathing

  sharesin’doubleitself’,itsharesalsoin’eternal’,but

  incidentally;for’thedouble’happenstobeeternal。Thereforethe

  Formswillbesubstance。Butthesamenamesindicatesubstanceinthis

  andintheidealworldorwhatwillbethemeaningofsayingthat

  thereissomethingapartfromtheparticulars-theoneovermany?。And

  iftheIdeasandthethingsthatshareinthemhavethesameform,

  therewillbesomethingcommon:forwhyshould’2’beoneandthesame

  intheperishable2’s,orinthe2’swhicharemanybuteternal,and

  notthesameinthe’2itself’asintheindividual2?Butifthey

  havenotthesameform,theywillhaveonlythenameincommon,andit

  isasifoneweretocallbothCalliasandapieceofwooda’man’,

  withoutobservinganycommunitybetweenthem。

  Butifwearetosupposethatinotherrespectsthecommon

  definitionsapplytotheForms,e。g。that’planefigure’andtheother

  partsofthedefinitionapplytothecircleitself,but’whatreally

  is’hastobeadded,wemustinquirewhetherthisisnotabsolutely

  meaningless。Fortowhatisthistobeadded?To’centre’orto

  ’plane’ortoallthepartsofthedefinition?Foralltheelementsin

  theessenceareIdeas,e。g。’animal’and’two-footed’。Further,

  theremustbesomeIdealansweringto’plane’above,somenaturewhich

  willbepresentinalltheFormsastheirgenus。

  Aboveallonemightdiscussthequestionwhatintheworldthe

  Formscontributetosensiblethings,eithertothosethatare

  eternalortothosethatcomeintobeingandceasetobe;forthey

  causeneithermovementnoranychangeinthem。Butagaintheyhelp

  innowiseeithertowardstheknowledgeofotherthingsforthey

  arenoteventhesubstanceofthese,elsetheywouldhavebeenin

  them,ortowardstheirbeing,iftheyarenotintheindividuals

  whichshareinthem;thoughiftheywere,theymightbethoughtto

  becauses,aswhitecauseswhitenessinawhiteobjectbyentering

  intoitscomposition。Butthisargument,whichwasusedfirstby

  Anaxagoras,andlaterbyEudoxusinhisdiscussionofdifficultiesand

  bycertainothers,isveryeasilyupset;foritiseasytocollect

  manyandinsuperableobjectionstosuchaview。

点击下载App,搜索"METAPHYSICS",免费读到尾