第46章
加入书架 A- A+
点击下载App,搜索"METAPHYSICS",免费读到尾

  Butthisconsequencealsowemustnotforget,thatitfollowsthat

  therearepriorandposterior2andsimilarlywiththeother

  numbers。Forletthe2’sinthe4besimultaneous;yettheseareprior

  tothoseinthe8andasthe2generatedthem,theygeneratedthe

  4’sinthe8-itself。Thereforeifthefirst2isanIdea,these2’s

  alsowillbeIdeasofsomekind。Andthesameaccountappliestothe

  units;fortheunitsinthefirst2generatethefourin4,sothat

  alltheunitscometobeIdeasandanIdeawillbecomposedof

  Ideas。Clearlythereforethosethingsalsoofwhichthesehappentobe

  theIdeaswillbecomposite,e。g。onemightsaythatanimalsare

  composedofanimals,ifthereareIdeasofthem。

  Ingeneral,todifferentiatetheunitsinanywayisan

  absurdityandafiction;andbyafictionImeanaforcedstatement

  madetosuitahypothesis。Forneitherinquantitynorinqualitydo

  weseeunitdifferingfromunit,andnumbermustbeeitherequalor

  unequal-allnumberbutespeciallythatwhichconsistsofabstract

  units-sothatifonenumberisneithergreaternorlessthan

  another,itisequaltoit;butthingsthatareequalandinnowise

  differentiatedwetaketobethesamewhenwearespeakingofnumbers。

  Ifnot,noteventhe2inthe10-itselfwillbeundifferentiated,

  thoughtheyareequal;forwhatreasonwillthemanwhoallegesthat

  theyarenotdifferentiatedbeabletogive?

  Again,ifeveryunitanotherunitmakestwo,aunitfromthe

  2-itselfandonefromthe3-itselfwillmakea2。Nowathiswill

  consistofdifferentiatedunits;andwillitbepriortothe3or

  posterior?Itratherseemsthatitmustbeprior;foroneoftheunits

  issimultaneouswiththe3andtheotherissimultaneouswiththe2。

  Andwe,forourpart,supposethatingeneral1and1,whetherthe

  thingsareequalorunequal,is2,e。g。thegoodandthebad,oraman

  andahorse;butthosewhoholdtheseviewssaythatnoteventwo

  unitsare2。

  Ifthenumberofthe3-itselfisnotgreaterthanthatofthe2,

  thisissurprising;andifitisgreater,clearlythereisalsoa

  numberinitequaltothe2,sothatthisisnotdifferentfromthe

  2-itself。Butthisisnotpossible,ifthereisafirstandasecond

  number。

  NorwilltheIdeasbenumbers。Forinthisparticularpointthey

  arerightwhoclaimthattheunitsmustbedifferent,ifthereare

  tobeIdeas;ashasbeensaidbefore。FortheFormisunique;butif

  theunitsarenotdifferent,the2’sandthe3’salsowillnotbe

  different。Thisisalsothereasonwhytheymustsaythatwhenwe

  countthus-’1,2’-wedonotproceedbyaddingtothegivennumber;

  forifwedo,neitherwillthenumbersbegeneratedfromthe

  indefinitedyad,norcananumberbeanIdea;forthenoneIdeawill

  beinanother,andallFormswillbepartsofoneForm。Andsowith

  aviewtotheirhypothesistheirstatementsareright,butasa

  wholetheyarewrong;fortheirviewisverydestructive,sincethey

  willadmitthatthisquestionitselfaffordssome

  difficulty-whether,whenwecountandsay-1,2,3-wecountby

  additionorbyseparateportions。Butwedoboth;andsoitis

  absurdtoreasonbackfromthisproblemtosogreatadifferenceof

  essence。

  Firstofallitiswelltodeterminewhatisthedifferentiaof

  anumber-andofaunit,ifithasadifferentia。Unitsmustdiffer

  eitherinquantityorinquality;andneitheroftheseseemstobe

  possible。Butnumberquanumberdiffersinquantity。Andifthe

  unitsalsodiddifferinquantity,numberwoulddifferfromnumber,

  thoughequalinnumberofunits。Again,arethefirstunitsgreateror

  smaller,anddothelateronesincreaseordiminish?Alltheseare

  irrationalsuppositions。Butneithercantheydifferinquality。For

  noattributecanattachtothem;foreventonumbersqualityissaid

  tobelongafterquantity。Again,qualitycouldnotcometothemeither

  fromthe1orthedyad;fortheformerhasnoquality,andthe

  lattergivesquantity;forthisentityiswhatmakesthingstobe

  many。Ifthefactsarereallyotherwise,theyshouldstatethis

  quiteatthebeginninganddetermineifpossible,regardingthe

  differentiaoftheunit,whyitmustexist,and,failingthis,what

  differentiatheymean。

  Evidentlythen,iftheIdeasarenumbers,theunitscannotall

  beassociable,norcantheybeinassociableineitherofthetwoways。

  Butneitheristhewayinwhichsomeothersspeakaboutnumbers

  correct。ThesearethosewhodonotthinkthereareIdeas,either

  withoutqualificationorasidentifiedwithcertainnumbers,butthink

  theobjectsofmathematicsexistandthenumbersarethefirstof

  existingthings,andthe1-itselfisthestarting-pointofthem。Itis

  paradoxicalthatthereshouldbea1whichisfirstof1’s,asthey

  say,butnota2whichisfirstof2’s,nora3of3’s;forthesame

  reasoningappliestoall。If,then,thefactswithregardtonumber

  areso,andonesupposesmathematicalnumberalonetoexist,the1

  isnotthestarting-pointforthissortof1mustdifferfrom

  the-otherunits;andifthisisso,theremustalsobea2whichis

  firstof2’s,andsimilarlywiththeothersuccessivenumbers。Butif

  the1isthestarting-point,thetruthaboutthenumbersmustrather

  bewhatPlatousedtosay,andtheremustbeafirst2and3and

  numbersmustnotbeassociablewithoneanother。Butifontheother

  handonesupposesthis,manyimpossibleresults,aswehavesaid,

  follow。Buteitherthisortheothermustbethecase,sothatif

  neitheris,numbercannotexistseparately。

  Itisevident,also,fromthisthatthethirdversionisthe

  worst,-theviewidealandmathematicalnumberisthesame。Fortwo

  mistakesmustthenmeetintheoneopinion。1Mathematicalnumber

  cannotbeofthissort,buttheholderofthisviewhastospinitout

  bymakingsuppositionspeculiartohimself。And2hemustalsoadmit

  alltheconsequencesthatconfrontthosewhospeakofnumberinthe

  senseof’Forms’。

  ThePythagoreanversioninonewayaffordsfewerdifficultiesthan

  thosebeforenamed,butinanotherwayhasotherspeculiarto

  itself。Fornotthinkingofnumberascapableofexistingseparately

  removesmanyoftheimpossibleconsequences;butthatbodiesshouldbe

  composedofnumbers,andthatthisshouldbemathematicalnumber,is

  impossible。Foritisnottruetospeakofindivisiblespatial

  magnitudes;andhowevermuchtheremightbemagnitudesofthissort,

  unitsatleasthavenotmagnitude;andhowcanamagnitudebecomposed

  ofindivisibles?Butarithmeticalnumber,atleast,consistsofunits,

  whilethesethinkersidentifynumberwithrealthings;atanyrate

  theyapplytheirpropositionstobodiesasiftheyconsistedof

  thosenumbers。

  If,then,itisnecessary,ifnumberisaself-subsistentreal

  thing,thatitshouldexistinoneofthesewayswhichhavebeen

  mentioned,andifitcannotexistinanyofthese,evidentlynumber

  hasnosuchnatureasthosewhomakeitseparablesetupforit。

  Again,doeseachunitcomefromthegreatandthesmall,

  equalized,oronefromthesmall,anotherfromthegreat?aIfthe

  latter,neitherdoeseachthingcontainalltheelements,norare

  theunitswithoutdifference;forinonethereisthegreatandin

  anotherthesmall,whichiscontraryinitsnaturetothegreat。

  Again,howisitwiththeunitsinthe3-itself?Oneofthemisanodd

  unit。Butperhapsitisforthisreasonthattheygive1-itselfthe

  middleplaceinoddnumbers。bButifeachofthetwounitsconsists

  ofboththegreatandthesmall,equalized,howwillthe2whichis

  asinglething,consistofthegreatandthesmall?Orhowwillit

  differfromtheunit?Again,theunitispriortothe2;forwhenit

  isdestroyedthe2isdestroyed。Itmust,then,betheIdeaofanIdea

  sinceitispriortoanIdea,anditmusthavecomeintobeing

  beforeit。Fromwhat,then?Notfromtheindefinitedyad,forits

  functionwastodouble。

  Again,numbermustbeeitherinfiniteorfinite;forthese

  thinkersthinkofnumberascapableofexistingseparately,sothatit

  isnotpossiblethatneitherofthosealternativesshouldbetrue。

  Clearlyitcannotbeinfinite;forinfinitenumberisneitherodd

  noreven,butthegenerationofnumbersisalwaysthegeneration

  eitherofanoddorofanevennumber;inoneway,when1operates

  onanevennumber,anoddnumberisproduced;inanotherway,when2

  operates,thenumbersgotfrom1bydoublingareproduced;in

  anotherway,whentheoddnumbersoperate,theotherevennumbers

  areproduced。Again,ifeveryIdeaisanIdeaofsomething,andthe

  numbersareIdeas,infinitenumberitselfwillbeanIdeaof

  something,eitherofsomesensiblethingorofsomethingelse。Yet

  thisisnotpossibleinviewoftheirthesisanymorethanitis

  reasonableinitself,atleastiftheyarrangetheIdeasastheydo。

  Butifnumberisfinite,howfardoesitgo?Withregardtothis

  notonlythefactbutthereasonshouldbestated。Butifnumber

  goesonlyupto10assomesay,firstlytheFormswillsoonrunshort;

  e。g。if3isman-himself,whatnumberwillbethehorse-itself?The

  seriesofthenumberswhicharetheseveralthings-themselvesgoes

  upto10。Itmust,then,beoneofthenumberswithintheselimits;

  foritisthesethataresubstancesandIdeas。Yettheywillrun

  short;forthevariousformsofanimalwilloutnumberthem。Atthe

  sametimeitisclearthatifinthiswaythe3isman-himself,the

  other3’saresoalsoforthoseinidenticalnumbersaresimilar,so

  thattherewillbeaninfinitenumberofmen;ifeach3isanIdea,

  eachofthenumberswillbeman-himself,andifnot,theywillat

  leastbemen。Andifthesmallernumberispartofthegreater

  beingnumberofsuchasortthattheunitsinthesamenumberare

  associable,thenifthe4-itselfisanIdeaofsomething,e。g。of

  ’horse’orof’white’,manwillbeapartofhorse,ifmanisItis

  paradoxicalalsothatthereshouldbeanIdeaof10butnotof11,nor

  ofthesucceedingnumbers。Again,therebothareandcometobe

  certainthingsofwhichtherearenoForms;why,then,aretherenot

  Formsofthemalso?WeinferthattheFormsarenotcauses。Again,

  itisparadoxical-ifthenumberseriesupto10ismoreofareal

  thingandaFormthan10itself。Thereisnogenerationofthe

  formerasonething,andthereisofthelatter。Buttheytryto

  workontheassumptionthattheseriesofnumbersupto10isa

  completeseries。Atleasttheygeneratethederivatives-e。g。thevoid,

  proportion,theodd,andtheothersofthiskind-withinthedecade。

  Forsomethings,e。g。movementandrest,goodandbad,theyassign

  totheoriginativeprinciples,andtheotherstothenumbers。This

  iswhytheyidentifytheoddwith1;foriftheoddimplied3how

  would5beodd?Again,spatialmagnitudesandallsuchthingsare

  explainedwithoutgoingbeyondadefinitenumber;e。g。thefirst,

  theindivisible,line,thenthe2&c。;theseentitiesalsoextendonly

  upto10。

  Again,ifnumbercanexistseparately,onemightaskwhichis

  prior-1,or3or2?Inasmuchasthenumberiscomposite,1isprior,

  butinasmuchastheuniversalandtheformisprior,thenumberis

  prior;foreachoftheunitsispartofthenumberasitsmatter,

  andthenumberactsasform。Andinasensetherightangleisprior

  totheacute,becauseitisdeterminateandinvirtueofits

  definition;butinasensetheacuteisprior,becauseitisapart

  andtherightangleisdividedintoacuteangles。Asmatter,then,the

  acuteangleandtheelementandtheunitareprior,butinrespect

  oftheformandofthesubstanceasexpressedinthedefinition,the

  rightangle,andthewholeconsistingofthematterandtheform,

  areprior;fortheconcretethingisnearertotheformandtowhatis

  expressedinthedefinition,thoughingenerationitislater。How

  thenis1thestarting-point?Becauseitisnotdivisiable,they

  say;butboththeuniversal,andtheparticularortheelement,are

  indivisible。Buttheyarestarting-pointsindifferentways,onein

  definitionandtheotherintime。Inwhichway,then,is1the

点击下载App,搜索"METAPHYSICS",免费读到尾