第47章
加入书架 A- A+
点击下载App,搜索"METAPHYSICS",免费读到尾

  starting-point?Ashasbeensaid,therightangleisthoughttobe

  priortotheacute,andtheacutetotheright,andeachisone。

  Accordinglytheymake1thestarting-pointinbothways。Butthisis

  impossible。Fortheuniversalisoneasformorsubstance,whilethe

  elementisoneasapartorasmatter。Foreachofthetwoisina

  senseone-intrutheachofthetwounitsexistspotentiallyat

  leastifthenumberisaunityandnotlikeaheap,i。e。if

  differentnumbersconsistofdifferentiatedunits,astheysay,but

  notincompletereality;andthecauseoftheerrortheyfellinto

  isthattheywereconductingtheirinquiryatthesametimefromthe

  standpointofmathematicsandfromthatofuniversaldefinitions,so

  that1fromtheformerstandpointtheytreatedunity,theirfirst

  principle,asapoint;fortheunitisapointwithoutposition。

  Theyputthingstogetheroutofthesmallestparts,assomeothers

  alsohavedone。Thereforetheunitbecomesthematterofnumbersand

  atthesametimepriorto2;andagainposterior,2beingtreatedasa

  whole,aunity,andaform。But2becausetheywereseekingthe

  universaltheytreatedtheunitywhichcanbepredicatedofa

  number,asinthissensealsoapartofthenumber。Butthese

  characteristicscannotbelongatthesametimetothesamething。

  Ifthe1-itselfmustbeunitaryforitdiffersinnothingfrom

  other1’sexceptthatitisthestarting-point,andthe2is

  divisiblebuttheunitisnot,theunitmustbelikerthe1-itself

  thanthe2is。Butiftheunitislikerit,itmustbelikertothe

  unitthantothe2;thereforeeachoftheunitsin2mustbeprior

  tothe2。Buttheydenythis;atleasttheygeneratethe2first。

  Again,ifthe2-itselfisaunityandthe3-itselfisonealso,both

  forma2。Fromwhat,then,isthis2produced?

  Sincethereisnotcontactinnumbers,butsuccession,viz。

  betweentheunitsbetweenwhichthereisnothing,e。g。betweenthose

  in2orin3onemightaskwhetherthesesucceedthe1-itselfor

  not,andwhether,ofthetermsthatsucceedit,2oreitherofthe

  unitsin2isprior。

  Similardifficultiesoccurwithregardtotheclassesofthings

  posteriortonumber,-theline,theplane,andthesolid。Forsome

  constructtheseoutofthespeciesofthe’greatandsmall’;e。g。

  linesfromthe’longandshort’,planesfromthe’broadandnarrow’,

  massesfromthe’deepandshallow’;whicharespeciesofthe’great

  andsmall’。Andtheoriginativeprincipleofsuchthingswhichanswers

  tothe1differentthinkersdescribeindifferentways,Andinthese

  alsotheimpossibilities,thefictions,andthecontradictionsof

  allprobabilityareseentobeinnumerable。Forigeometrical

  classesareseveredfromoneanother,unlesstheprinciplesofthese

  areimpliedinoneanotherinsuchawaythatthe’broadandnarrow’

  isalso’longandshort’butifthisisso,theplanewillbeline

  andthesolidaplane;again,howwillanglesandfiguresandsuch

  thingsbeexplained?。Andiithesamehappensasinregardto

  number;for’longandshort’,&c。,areattributesofmagnitude,but

  magnitudedoesnotconsistofthese,anymorethanthelineconsists

  of’straightandcurved’,orsolidsof’smoothandrough’。

  Alltheseviewsshareadifficultywhichoccurswithregardto

  species-of-a-genus,whenonepositstheuniversals,viz。whetheritis

  animal-itselforsomethingotherthananimal-itselfthatisinthe

  particularanimal。True,iftheuniversalisnotseparablefrom

  sensiblethings,thiswillpresentnodifficulty;butifthe1andthe

  numbersareseparable,asthosewhoexpresstheseviewssay,itisnot

  easytosolvethedifficulty,ifonemayapplythewords’noteasy’to

  theimpossible。Forwhenweapprehendtheunityin2,oringeneralin

  anumber,doweapprehendathing-itselforsomethingelse?。

  Some,then,generatespatialmagnitudesfrommatterofthis

  sort,othersfromthepoint-andthepointisthoughtbythemtobe

  not1butsomethinglike1-andfromothermatterlikeplurality,but

  notidenticalwithit;aboutwhichprinciplesnonethelessthesame

  difficultiesoccur。Forifthematterisone,lineandplane-and

  soliwillbethesame;forfromthesameelementswillcomeoneand

  thesamething。Butifthemattersaremorethanone,andthereisone

  forthelineandasecondfortheplaneandanotherforthesolid,

  theyeitherareimpliedinoneanotherornot,sothatthesame

  resultswillfollowevenso;foreithertheplanewillnotcontaina

  lineoritwillhealine。

  Again,hownumbercanconsistoftheoneandplurality,they

  makenoattempttoexplain;buthowevertheyexpressthemselves,the

  sameobjectionsariseasconfrontthosewhoconstructnumberoutof

  theoneandtheindefinitedyad。Fortheoneviewgeneratesnumber

  fromtheuniversallypredicatedplurality,andnotfromaparticular

  plurality;andtheothergeneratesitfromaparticularplurality,but

  thefirst;for2issaidtobea’firstplurality’。Thereforethereis

  practicallynodifference,butthesamedifficultieswillfollow,-is

  itintermixtureorpositionorblendingorgeneration?andsoon。

  Aboveallonemightpressthequestion’ifeachunitisone,whatdoes

  itcomefrom?’Certainlyeachisnottheone-itself。Itmust,then,

  comefromtheoneitselfandplurality,orapartofplurality。Tosay

  thattheunitisapluralityisimpossible,foritisindivisible;and

  togenerateitfromapartofpluralityinvolvesmanyother

  objections;foraeachofthepartsmustbeindivisibleorit

  willbeapluralityandtheunitwillbedivisibleandtheelements

  willnotbetheoneandplurality;forthesingleunitsdonotcome

  frompluralityandtheone。Again,,theholderofthisviewdoes

  nothingbutpresupposeanothernumber;forhispluralityof

  indivisiblesisanumber。Again,wemustinquire,inviewofthis

  theoryalso,whetherthenumberisinfiniteorfinite。Fortherewas

  atfirst,asitseems,apluralitythatwasitselffinite,from

  whichandfromtheonecomesthefinitenumberofunits。Andthere

  isanotherpluralitythatisplurality-itselfandinfinite

  plurality;whichsortofplurality,then,istheelementwhich

  co-operateswiththeone?Onemightinquiresimilarlyaboutthepoint,

  i。e。theelementoutofwhichtheymakespatialmagnitudes。Forsurely

  thisisnottheoneandonlypoint;atanyrate,then,letthemsay

  outofwhateachofthepointsisformed。Certainlynotofsome

  distancethepoint-itself。Noragaincantherebeindivisible

  partsofadistance,astheelementsoutofwhichtheunitsaresaid

  tobemadeareindivisiblepartsofplurality;fornumberconsists

  ofindivisibles,butspatialmagnitudesdonot。

  Alltheseobjections,then,andothersofthesortmakeitevident

  thatnumberandspatialmagnitudescannotexistapartfromthings。

  Again,thediscordaboutnumbersbetweenthevariousversionsisa

  signthatitistheincorrectnessoftheallegedfactsthemselvesthat

  bringsconfusionintothetheories。Forthosewhomaketheobjects

  ofmathematicsaloneexistapartfromsensiblethings,seeingthe

  difficultyabouttheFormsandtheirfictitiousness,abandonedideal

  numberandpositedmathematical。Butthosewhowishedtomakethe

  Formsatthesametimealsonumbers,butdidnotsee,ifoneassumed

  theseprinciples,howmathematicalnumberwastoexistapartfrom

  ideal,madeidealandmathematicalnumberthesame-inwords,since

  infactmathematicalnumberhasbeendestroyed;fortheystate

  hypothesespeculiartothemselvesandnotthoseofmathematics。Andhe

  whofirstsupposedthattheFormsexistandthattheFormsarenumbers

  andthattheobjectsofmathematicsexist,naturallyseparatedthe

  two。Thereforeitturnsoutthatallofthemarerightinsome

  respect,butonthewholenotright。Andtheythemselvesconfirmthis,

  fortheirstatementsdonotagreebutconflict。Thecauseisthat

  theirhypothesesandtheirprinciplesarefalse。Anditishardto

  makeagoodcaseoutofbadmaterials,accordingtoEpicharmus:’as

  soonas’tissaid,’tisseentobewrong。’

  Butregardingnumbersthequestionswehaveraisedandthe

  conclusionswehavereachedaresufficientforwhilehewhois

  alreadyconvincedmightbefurtherconvincedbyalongerdiscussion,

  onenotyetconvincedwouldnotcomeanynearertoconviction;

  regardingthefirstprinciplesandthefirstcausesandelements,

  theviewsexpressedbythosewhodiscussonlysensiblesubstance

  havebeenpartlystatedinourworksonnature,andpartlydonot

  belongtothepresentinquiry;buttheviewsofthosewhoassert

  thatthereareothersubstancesbesidesthesensiblemustbe

  considerednextafterthosewehavebeenmentioning。Since,then,some

  saythattheIdeasandthenumbersaresuchsubstances,andthatthe

  elementsoftheseareelementsandprinciplesofrealthings,we

  mustinquireregardingthesewhattheysayandinwhatsensethey

  sayit。

  Thosewhopositnumbersonly,andthesemathematical,mustbe

  consideredlater;butasregardsthosewhobelieveintheIdeasone

  mightsurveyatthesametimetheirwayofthinkingandthedifficulty

  intowhichtheyfall。FortheyatthesametimemaketheIdeas

  universalandagaintreatthemasseparableandasindividuals。That

  thisisnotpossiblehasbeenarguedbefore。Thereasonwhythose

  whodescribedtheirsubstancesasuniversalcombinedthesetwo

  characteristicsinonething,isthattheydidnotmakesubstances

  identicalwithsensiblethings。Theythoughtthattheparticularsin

  thesensibleworldwereastateoffluxandnoneofthemremained,but

  thattheuniversalwasapartfromtheseandsomethingdifferent。And

  Socratesgavetheimpulsetothistheory,aswesaidinourearlier

  discussion,byreasonofhisdefinitions,buthedidnotseparate

  universalsfromindividuals;andinthishethoughtrightly,innot

  separatingthem。Thisisplainfromtheresults;forwithoutthe

  universalitisnotpossibletogetknowledge,buttheseparationis

  thecauseoftheobjectionsthatarisewithregardtotheIdeas。His

  successors,however,treatingitasnecessary,iftherearetobe

  anysubstancesbesidesthesensibleandtransientsubstances,that

  theymustbeseparable,hadnoothers,butgaveseparateexistence

  totheseuniversallypredicatedsubstances,sothatitfollowedthat

  universalsandindividualswerealmostthesamesortofthing。Thisin

  itself,then,wouldbeonedifficultyintheviewwehavementioned。

  Letusnowmentionapointwhichpresentsacertaindifficulty

  bothtothosewhobelieveintheIdeasandtothosewhodonot,and

  whichwasstatedbefore,atthebeginning,amongtheproblems。Ifwe

  donotsupposesubstancestobeseparate,andinthewayinwhich

  individualthingsaresaidtobeseparate,weshalldestroy

  substanceinthesenseinwhichweunderstand’substance’;butifwe

  conceivesubstancestobeseparable,howarewetoconceivetheir

  elementsandtheirprinciples?

  Iftheyareindividualandnotuniversal,arealthingswill

  bejustofthesamenumberastheelements,andbtheelements

  willnotbeknowable。Foraletthesyllablesinspeechbe

  substances,andtheirelementselementsofsubstances;thentheremust

  beonlyone’ba’andoneofeachofthesyllables,sincetheyare

  notuniversalandthesameinformbuteachisoneinnumberanda

  ’this’andnotakindpossessedofacommonnameandagainthey

  supposethatthe’justwhatathingis’isineachcaseone。Andif

  thesyllablesareunique,sotooarethepartsofwhichthey

  consist;therewillnot,then,bemorea’sthanone,normorethanone

  ofanyoftheotherelements,onthesameprincipleonwhichan

  identicalsyllablecannotexistinthepluralnumber。Butifthisis

  so,therewillnotbeotherthingsexistingbesidestheelements,

  butonlytheelements。

  bAgain,theelementswillnotbeevenknowable;fortheyare

  notuniversal,andknowledgeisofuniversals。Thisisclearfrom

  demonstrationsandfromdefinitions;forwedonotconcludethat

  thistrianglehasitsanglesequaltotworightangles,unlessevery

  trianglehasitsanglesequaltotworightangles,northatthisman

  isananimal,unlesseverymanisananimal。

  Butiftheprinciplesareuniversal,eitherthesubstances

点击下载App,搜索"METAPHYSICS",免费读到尾