第2章
加入书架 A- A+
点击下载App,搜索"Memory",免费读到尾

  Inparticulartheactivityimmediatelyprecedingthetestwaskeptasconstantincharacteraswaspossible。Sincethementalaswellasthephysicalconditionofmanissubjecttoanevidentperiodicityof24hours,itwastakenforgrantedthatlikeexperimentalconditionsareobtainableonlyatliketimesofday。However,inordertocarryoutmorethanonetestinagivenday,differentexperimentswereoccasionallycarriedontogetheratdifferenttimesofday。Whentoogreatchangesintheouterandinnerlifeoccurred,thetestswerediscontinuedforalengthoftime。Theirresumptionwasprecededbysomedaysofrenewedtrainingvaryingaccordingtothelengthoftheinterruption。Section14。SourcesofErrorTheguidingpointofviewintheselectionofmaterialandindeterminingtherulesforitsemploymentwas,asisevident,theattempttosimplifyasfaraspossible,andtokeepasconstantaspossible,theconditionsunderwhichtheactivitytobeobserved,thatofmemory,cameintoplay。

  Naturallythebetteronesucceedsinthisattemptthemoredoeshewithdrawfromthecomplicatedandchangingconditionsunderwhichthisactivitytakesplaceinordinarylifeandunderwhichitisofimportancetous。

  Butthatisnoobjectiontothemethod。Thefreelyfallingbodyandthefrictionlessmachine,etc。,withwhichphysicsdeals,arealsoonlyabstractionswhencomparedwiththeactualhappeningsinnaturewhichareofimporttous。Wecanalmostnowheregetadirectknowledgeofthecomplicatedandthereal,butmustgetattheminroundaboutwaysbysuccessivecombinationsofexperiences,eachofwhichisobtainedinartificial,experimentalcases,rarelyorneverfurnishedinthisformbynature。

  Meanwhilethefactthattheconnectionwiththeactivityofmemoryinordinarylifeisforthemomentlostisoflessimportancethanthereverse,namely,thatthisconnectionwiththecomplicationsandfluctuationsoflifeisnecessarilystillatoocloseone。Thestruggletoattainthemostsimpleanduniformconditionspossibleatnumerouspointsnaturallyencountersobstaclesthatarerootedinthenatureofthecaseandwhichthwarttheattempt。Theunavoidabledissimilarityofthematerialandtheequallyunavoidableirregularityoftheexternalconditionshavealreadybeentouchedupon。Ipassnexttotwootherunsurmountable[sic]sourcesofdifficulty。

  Bymeansofthesuccessiverepetitionstheseriesare,sotospeak,raisedtoeverhigherlevels。Thenaturalassumptionwouldbethatatthemomentwhentheycouldforthefirsttimebereproducedbyheartthelevelthusattainedwouldalwaysbethesame。Ifthiswerethecase,i。e。,ifthischaracteristicfirstreproductionwereeverywhereaninvariableobjectivesignofanequallyinvariablefixednessoftheseries,itwouldbeofrealvaluetous。This,however,isnotactuallythecase。Theinnerconditionsoftheseparateseriesatthemomentofthefirstpossiblereproductionarenotalwaysthesame,andthemostthatcanbeassumedisthatinthecaseofthesedifferentseriestheseconditionsalwaysoscillateaboutthesamedegreeofinnersurety。Thisisclearlyseenifthelearningandrepeatingoftheseriesiscontinuedafterthatfirstspontaneousreproductionoftheserieshasbeenattained。Asageneralthingthecapacityforvoluntaryreproductionpersistsafterithasoncebeenreached。Innumerouscases,however,itdisappearsimmediatelyafteritsfirstappearance,andisregainedonlyafterseveralfurtherrepetitions。Thisprovesthatthepredispositionformemorisingtheseries,irrespectiveoftheirdifferencesofalargersortaccordingtothetimeofday,totheobjectiveandsubjectiveconditions,etc。,issubjecttosmallvariationsofshortduration,whethertheybecalledoscillationsofattentionorsomethingelse。If,attheveryinstantwhenthematerialtobememorisedhasalmostreachedthedesireddegreeofsurety,achancemomentofespecialmentalclearnessoccurs,thentheseriesiscaughtonthewingasitwere,oftentothelearner’ssurprise;

  buttheseriescannotlongberetained。Bytheoccurrenceofamomentofspecialdullness,ontheotherhand,thefirsterrorlessreproductionispostponedforawhile,althoughthelearnerfeelsthathereallyismasterofthethingandwondersattheconstantlyrecurringhesitations。Intheformercase,inspiteofthehomogeneityoftheexternalconditions,thefirsterrorlessreproductionisreachedatapointalittlebelowthelevelofretentionnormallyconnectedwithit。Inthelattercaseitisreachedatapointalittleabovethatlevel。Aswassaidbefore,themostplausibleconjecturetomakeinthisconnectionisthatthesedeviationswillcompensateeachotherinthecaseoflargegroups。

  Oftheothersourceoferror,Icanonlysaythatitmayoccurandthat,whenitdoes,itisasourceofgreatdanger。Imeanthesecretinfluenceoftheoriesandopinionswhichareintheprocessofformation。Aninvestigationusuallystartsoutwithdefinitepresuppositionsastowhattheresultswillbe。Butifthisisnotthecaseatthestart,suchpresuppositionsformgraduallyincasetheexperimenterisobligedtoworkalone。Foritisimpossibletocarryontheinvestigationsforanylengthoftimewithouttakingnoticeoftheresults。Theexperimentermustknowwhethertheproblemhasbeenproperlyformulatedorwhetheritneedscompletionorcorrection。

  Thefluctuationsoftheresultsmustbecontrolledinorderthattheseparateobservationsmaybecontinuedlongenoughtogivetothemeanvaluethecertaintynecessaryforthepurposeinhand。Consequentlyitisunavoidablethat,aftertheobservationofthenumericalresults,suppositionsshouldariseastogeneralprincipleswhichareconcealedinthemandwhichoccasionallygivehintsastotheirpresence。Astheinvestigationsarecarriedfurther,thesesuppositions,aswellasthosepresentatthebeginning,constituteacomplicatingfactorwhichprobablyhasadefiniteinfluenceuponthesubsequentresults。ItgoeswithoutsayingthatwhatIhaveinmindisnotanyconsciouslyrecognisedinfluencebutsomethingsimilartothatwhichtakesplacewhenonetriestobeveryunprejudicedortoridone’sselfofathoughtandbythatveryattemptfostersthatthoughtorprejudice。

  Theresultsaremethalfwaywithananticipatoryknowledge,withakindofexpectation。Simplyfortheexperimentertosaytohimselfthatsuchanticipationsmustnotbeallowedtoaltertheimpartialcharacteroftheinvestigationwillnotbyitselfbringaboutthatresult。Onthecontrary,theydoremainandplayarôleindeterminingthewholeinnerattitude。

  Accordingasthesubjectnoticesthattheseanticipationsareconfirmedornotconfirmed(andingeneralhenoticesthisduringthelearning),hewillfeel,ifonlyinaslightdegree,asortofpleasureorsurprise。

  Andwouldyounotexpectthat,inspiteofthegreatestconscientiousness,thesurprisefeltbythesubjectoverespeciallystartlingdeviations,whetherpositiveornegative,wouldresult,withoutanyvolitiononhispart,inaslightchangeinattitude?Wouldhenotbelikelytoexerthimselfalittlemorehereandtorelaxalittlemoretherethanwouldhavebeenthecasehadhehadnoknowledgeorpresuppositionconcerningtheprobablenumericalvalueoftheresults?Icannotassertthatthisisalwaysorevenfrequentlythecase,sincewearenothereconcernedwiththingsthatcanbedirectlyobserved,andsincenumerousresultsinwhichsuchsecretwarpingofthetruthmightbeexpectedshowevidentindependenceofit。

  AllIcansayis,wemustexpectsomethingofthesortfromourgeneralknowledgeofhumannature,andinanyinvestigationsinwhichtheinnerattitudeisofverygreatimportance,asforexampleinexperimentsonsenseperception,wemustgivespecialheedtoitsmisleadinginfluence。

  Itisevidenthowthisinfluenceingeneralmakesitselffelt。Withaveragevaluesitwouldtendtoleveltheextremes;whereespeciallylargeorsmallnumbersareexpecteditwouldtendtofurtherincreaseordecreasethevalues。Thisinfluencecanonlybeavoidedwithcertaintywhenthetestsaremadebytwopersonsworkingtogether,oneofwhomactsassubjectforacertaintimewithoutraisinganyquestionsconcerningthepurposeortheresultoftheinvestigations。Otherwisehelpcanbeobtainedonlybyroundaboutmethods,andthen,probably,onlytoalimitedextent。Thesubject,asImyselfalwaysdid,canconcealfromhimselfaslongaspossibletheexactresults。Theinvestigationcanbeextendedinsuchawaythattheupperlimitsofthevariablesinquestionareattained。Inthisway,whateverwarpingofthetruthtakesplacebecomesrelativelymoredifficultandunimportant。Finally,thesubjectcanproposemanyproblemswhichwillappeartobeindependentofeachotherinthehopethat,asaresult,thetruerelationoftheinterconnectedmentalprocesseswillbreakitswaythrough。

  Towhatextentthesourcesoferrormentionedhaveaffectedtheresultsgivenbelownaturallycannotbeexactlydetermined。Theabsolutevalueofthenumberswilldoubtlessbefrequentlyinfluencedbythem,butasthepurposeofthetestscouldneverhavebeentheprecisedeterminationofabsolutevalues,butrathertheattainmentofcomparativeresults(especiallyinthenumericalsense)andrelativelystillmoregeneralresults,thereisnoreasonfortoogreatanxiety。Inoneimportantcase(sec。38)Icoulddirectlyconvincemyselfthattheexclusionofallknowledgeconcerningthecharacteroftheresultsbroughtaboutnochange;inanothercasewhereImyselfcouldnoteliminateadoubtIcalledespecialattentiontoit。

  Inanycasehewhoisinclinedaprioritoestimateveryhighlytheunconsciousinfluenceofsecretwishesonthetotalmentalattitudewillalsohavetotakeintoconsiderationthatthesecretwishtofindobjectivetruthandnotwithdisproportionatetoiltoplacethecreationofhisownfancyuponthefeetofclay——thatthiswish,Isay,mayalsoclaimaplaceinthecomplicatedmechanismofthesepossibleinfluences。Section15。MeasurementofWorkRequiredThenumberofrepetitionswhichwerenecessaryformemorisingaseriesuptothefirstpossiblereproductionwasnotoriginallydeterminedbycounting,butindirectlybymeasuringinsecondsthetimethatwasrequiredtomemoriseit。Mypurposewasinthiswaytoavoidthedistractionnecessarilyconnectedwithcounting;andIcouldassumethattherewasaproportionalrelationexistingbetweenthetimesandthenumberofrepetitionsoccurringatanytimeinadefiniterhythm。Wecouldscarcelyexpectthisproportionalitytobeperfect,since,whenonlythetimeismeasured,themomentsofhesitationandreflectionareincluded,whichisnottruewhentherepetitionsarecounted。Difficultseriesinwhichhesitationwilloccurrelativelymorefrequently,will,bythemethodoftimemeasurement,getcomparativelygreaternumbers,theeasierserieswillgetcomparativelysmallernumbersthanwhentherepetitionsarecounted。Butwithlargergroupsofseriesatolerablyequaldistributionofdifficultandequalseriesmaybetakenforgranted。Consequentlythedeviationsfromproportionalitywillcompensatethemselvesinasimilarmannerinthecaseofeachgroup。

  When,forcertaintests,thedirectcountingoftherepetitionsbecamenecessary,Iproceededinthefollowingmanner。Littlewoodenbuttonsmeasuringabout14mms。indiameterand4mms。attheirgreatestthicknesswerestrungonacordwhichwouldpermitofeasydisplacementandyetheavyenoughtopreventaccidentalslipping。Eachtenthpiecewasblack;theothershadtheirnaturalcolor。Duringthememorisationthecordwasheldinthehandandateachnewrepetitionapiecewasdisplacedsomecentimetersfromlefttoright。Whentheseriescouldberecited,aglanceatthecord,sinceitwasdividedintotens,wasenoughtoascertainthenumberofrepetitionsthathadbeennecessary。Themanipulationrequiredsolittleattentionthatinthemeanvaluesofthetimeused(whichwasalwaystabulatedatthesametime)nolengtheningcouldbenotedascomparedwithearliertests。

  Bymeansofthissimultaneousmeasurementoftimeandrepetitionsincidentalopportunitywasaffordedforverifyingandmoreaccuratelydefiningthatwhichhadbeenforeseenandwhichhasjustbeenexplainedwithregardtotheirinterrelation。Whentheprescribedrhythmof150strokesperminutewaspreciselymaintained,eachsyllablewouldtake0。4second;andwhenthesimplereadingoftheserieswasinterruptedbyattemptstoreciteitbyheart,theunavoidablehesitationswouldlengthenthetimebysmallbutfairlyuniformamounts。This,however,didnotholdtruewithanyexactness;

  onthecontrary,thefollowingmodificationsappeared。

  Whenthedirectreadingoftheseriespredominated,acertainforcing,anaccelerationoftherhythm,occurredwhich,withoutcomingtoconsciousness,onthewholeloweredthetimeforeachsyllablebelowthestandardof0。4

  sec。

  Whentherewasinterchangebetweenreadingandreciting,however,thelengtheningofthetimewasnotingeneralconstant,butwasgreaterwiththelongerseries。Inthiscase,sincethedifficultyincreasesveryrapidlywithincreasinglengthoftheseries,thereoccursaslowingofthetempo,againinvoluntaryandnotdirectlynoticeable。Bothareillustratedbythefollowingtable。

  Assoonasthisdirectionofdeviationfromexactproportionalitywasnoticedthereappearedinthelearningacertainconsciousreactionagainstit。

  Finally,itappearedthattheprobableerrorofthetimemeasurementswassomewhatlargerthanthatoftherepetitions。Thisrelationisquiteintelligibleinthelightoftheexplanationsgivenabove。Inthecaseofthetimemeasurementsthelargervalues,whichnaturallyoccurredwiththemoredifficultseries,wererelativelysomewhatgreaterthaninthecaseofthenumberofrepetitions,becauserelativelytheywereforthemostpartlengthenedbythehesitations;conversely,thesmallertimeswerenecessarilysomewhatsmallerrelativelythanthenumberofrepetitions,becauseingeneraltheycorrespondedtotheeasierseries。Thedistributionofthevaluesinthecaseofthetimesisthereforegreaterthanthatofthevaluesinthecaseoftherepetitions。

  Thedifferencesbetweenthetwomethodsofreckoningare,asisreadilyseen,sufficientlylargetoleadtodifferentresultsinthecaseofinvestigationsseekingahighdegreeofexactness。Thatisnotthecasewiththeresultsasyetobtained;itisthereforeimmaterialwhetherthenumberofsecondsisusedorthatoftherepetitions。

  Decisioncannotbegivenaprioriastowhichmethodofmeasurementismorecorrect——i。e。,isthemoreadequatemeasureofthementalworkexpended。Itcanbesaidthattheimpressionsaredueentirelytotherepetitions,theyarethethingthatcounts;itcanbesaidthatahesitatingrepetitionisjustasgoodasasimplefluentreproductionoftheline,andthatbotharetobecountedequally。Butontheotherhanditmaybedoubtedthatthemomentsofrecollectionaremerelyaloss,In,anycaseacertaindisplayofenergytakesplaceinthem:ontheonehand,averyrapidadditionalrecollectionoftheimmediatelyprecedingwordsoccurs,anewstart,sotospeak,togetovertheperiodofhesitation;

  ontheotherhand,thereisheightenedattentiontothepassagesfollowing。

  Ifwiththis,asisprobable,afirmermemorisationoftheseriestakesplace,thenthesemomentshaveaclaimuponconsiderationwhichcanonlybegiventothemthroughthemeasurementofthetimes。

  Onlywhenaconsiderabledifferenceintheresultsofthetwokindsoftabulationappearswillitbepossibletogiveonethepreferenceovertheother。Thatonewillthenbechosenwhichgivesthesimplerformulationoftheresultinquestion。Section16。PeriodsoftheTestsThetestsweremadeintwoperiods,intheyears1879-80and1883-84,andextendedeachovermorethanayear。Duringalongtimepreliminaryexperimentsofasimilarnaturehadprecededthedefinitetestsofthefirstperiod,sothat,forallresultscommunicated,thetimeofincreasingskillmaybeconsideredaspast。AtthebeginningofthesecondperiodIwascarefultogivemyselfrenewedtraining。Thistemporaldistributionofthetestswithaseparatingintervalofmorethanthreeyearsgivesthedesiredpossibilityofacertainmutualcontrolofmostoftheresults。

  Frankly,thetestsofthetwoperiodsarenotstrictlycomparable。Inthecaseofthetestsofthefirstperiod,inordertolimitthesignificanceofthefirstfleetinggrasp[3]oftheseriesinmomentsofspecialconcentration,itwasdecidedtostudytheseriesuntiltwosuccessivefaultlessreproductionswerepossible。LaterIabandonedthismethod,whichonlyincompletelyaccomplisheditspurpose,andkepttothefirstfluentreproduction。Theearliermethodevidentlyinmanycasesresultedinasomewhatlongerperiodoflearning。

  Inadditiontherewasadifferenceinthehoursofthedayappointedforthetests。Thoseofthelaterperiodalloccurredintheafternoonhoursbetweenoneandthreeo’clock;thoseoftheearlierperiodwereunequallydividedbetweenthehoursof10-11A。M。,11-12A。M。,and6-8P。M。,whichforthesakeofbrevityIshalldesignateA,B,andC。

  Footnotes[1]Thevowelsoundsemployedwerea,e,i,o,u,ä

  ö,ü,au,ei,eu。Forthebeginningofthesyllablesthefollowingconsonantswereemployed:b,d,fg,h,j,k,l,m,n,p,r,s,(=sz),t,wandinadditionch,sch,softs,andtheFrenchj(19altogether);

  fortheendofthesyllablesf,k,l,m,n,p,r,s,(=sz)t,ch,sch(11altogether)。Forthefinalsoundfewerconsonantswereemployedthanfortheinitialsound,becauseaGermantongueevenafterseveralyearspractiseinforeignlanguagesdoesnotquiteaccustomitselftothecorrectpronunciationofthemediaeattheend。ForthesamereasonIrefrainedfromtheuseofotherforeignsoundsalthoughItriedatfirsttousethemforthesakeofenrichingthematerial。

  [2]Ishallretaininwhatfollowsthedesignationsemployedaboveandcallagroupofseveralsyllableseriesorasingleseriesa\"test。\"Anumberof\"tests\"Ishallspeakofasa\"testseries\"

  ora\"groupoftests。\"

  [3]Describedinsec。14。

  ClassicsintheHistoryofPsychology——Ebbinghaus(1885)Chapter4Memory:AContributiontoExperimentalPsychologyHermannEbbinghaus(1885)TranslatedbyHenryA。Ruger&ClaraE。Bussenius(1913)CHAPTERIVTHEUTILITYOFTHEAVERAGESOBTAINEDSection17。GroupingoftheResultsoftheTestsThefirstquestionwhichawaitsananswerfromtheinvestigationscarriedoutinthemannerdescribedis,asexplainedinsections7and8,thatofthenatureoftheaveragesobtained。Arethelengthsoftimerequiredformemorisingseriesofacertainlength,underconditionsasnearlyidenticalaspossible,groupedinsuchawaythatwemaybejustifiedinconsideringtheiraveragevaluesasmeasuresinthesenseofphysicalscience,oraretheynot?

  Ifthetestsaremadeinthewaydescribedabove,namely,sothatseveralseriesarealwaysmemorisedinimmediatesuccession,suchatypeofgroupingofthetimerecordscouldscarcelybeexpected。For,asthetimedevotedtolearningatagivensittingbecomesextended,certainvariableconditionsintheseparateseriescomeintoplay,thefluctuationsofwhichwecouldnotverywellexpect,fromwhatweknowoftheirnature,tobedistributedsymmetricallyaroundameanvalue。Accordinglythegroupingoftheresultsmustbeanasymmetricaloneandcannotcorrespondtothe\"lawoferror。\"

  Suchconditionsarethefluctuationsofattentionandthedecreasingmentalfreshness,which,atfirstveryquicklyandthenmoreandmoreslowly,giveswaytoacertainmentalfatigue。Therearenolimits,sotospeak,totheslowingdownofthelearningprocessescausedbyunusualdistractions;

  asaresultofthesethetimeforlearningaseriesmayoccasionallybeincreasedtodoublethatofitsaveragevalueormore。Theoppositeeffect,thatofanunusualexertion,cannotintheverynatureofthecaseoverstepacertainlimit。Itcanneverreducethelearningtimetozero。

  If,however,groupsofseriesequalinnumberandlearnedinimmediatesuccessionaretaken,thesedisturbinginfluencesmaybeconsideredtohavedisappearedorpracticallyso。Thedecreaseinmentalvigourinonegroupwillbepracticallythesameasthatinanother。Thepositiveandnegativefluctuationsofattentionwhichunderlikeconditionsoccurduringaquarterorhalfhourareapproximatelythesamefromdaytoday。Allthatisnecessarytoask,then,is:Dothetimesnecessaryforlearningequalgroupsofseriesexhibitthedesireddistribution?

  Icananswerthisquestionintheaffirmativewithsufficientcertainty。

  Thetwolongestseries,obtainedunderconditionssimilartoeachother,whichIpossess,are,tobesure,notlargeintheabove-mentionedtheoreticalsense;theysuffer,moreover,fromthedisadvantagethattheyoriginatedattimesseparatedbycomparativelylongintervalsduringwhichtherewerenecessarilymanychangesintheconditions。Inspiteofthis,theirgroupingcomesasnearascouldbeexpectedtotheonedemandedbythetheory。

  Thefirsttestseriestakenduringtheyears1879-80comprises92tests。

  Eachtestconsistedinmemorisingeightseriesof13syllableseach,whichprocessoflearningwascontinueduntiltworeproductionsofeachserieswerepossible。Thetimerequiredforalleightseriestakentogetherincludingthetimeforthetworeproductions(butofcoursenotforthepauses,seep。25,4)amountedtoanaverageof1,112secondswithaprobableerrorofobservationof±76。Thefluctuationsoftheresultswere,therefore,verysignificant:onlyhalfofthenumbersobtainedfellbetweenthelimits1,036and1,188,theotherhalfwasdistributedaboveandbelowtheselimits。Indetailthegroupingofthenumbersisasfollows:

  Intheinterval,1/4P。E。to1/2P。E。,thereoccursaslightpilingupofvalueswhichiscompensatedforbyagreaterlackinthesucceedinginterval,1/2P。E。toP。E。Apartfromthis,thecorrespondencebetweenthecalculatedandtheactualresultsissatisfactory。Thesymmetryofthedistributionleavessomethingtobedesired。Thevaluesbelowtheaveragepreponderatealittleinnumber,thoseabovepreponderatealittleinamountofdeviation:onlytwoofthelargesteightdeviationsarebelowthemeanvalue。Theinfluenceofattentionreferredtoabove,thefluctuationsofwhichintheseparateseriesshowgreaterdeviationstowardtheupperlimitthantowardthelower,hasnot,therefore,beenquitecompensatedbythecombinationofseveralseries。

  Thecorrectnessoftheobservationsandthecorrespondenceoftheirdistributionswiththeonetheoreticallydemandedaregreatlyimprovedinthesecondlargeseriesoftests。Thelattercomprisestheresultsof84seriesofteststakenduringtheyears1883-84。Eachtestconsistedinmemorisingsixseriesof16syllableseach,carriedonineachcasetothefirsterrorlessreproduction。Thewholetimenecessaryforthisamountedto1,261secondswiththeprobableerrorofobservationof±48。4——i。e。,halfofallthe84numbersfellwithinthelimits1,213-1,309。Theexactnessofthsobservationsthushadgreatlyincreasedascomparedwiththeformerseriesoftests:[1]

  Theintervalincludedbytheprobableerroramountstoonly71/2percentofthemeanvaluesasagainst14percentintheearliertests。Indetailthenumbersaredistributedasfollows:

  Thesymmetryofdistributionisheresatisfactorilymaintainedapartfromthenumbers,whichareunimportantonaccountoftheirsmallness。

  Thedeviationwhichisgreatestabsolutelyistowardthelowerlimit。

  Ifseveralofourseriesofsyllableswerecombinedintogroupsandthenmemorisedseparately,thelengthoftimenecessarytomemoriseawholegroupvariedgreatly,tobesure,whenrepeatedtestsweretaken;but,inspiteofthis,whentakenasawholetheyvariedinamannersimilartothatofthemeasuresoftheideallyhomogeneousprocessesofnaturalscience,whichalsovaryfromeachother。So,atleastinexperimentalfashion,itisallowabletousethemeanvaluesobtainedfromthenumericalresultsforthevarioustestsinordertoestablishtheexistenceofcausalrelationsjustasnaturalsciencedoesthatbymeansofitsconstants。

  Thenumberofseriesofsyllableswhichistobecombinedintoasinglegroup,ortest,isnaturallyindeterminate。Itmustbeexpected,however,thatasthenumberincreases,thecorrespondencebetweenthedistributionofthetimesactuallyfoundandthosecalculatedinaccordancewiththelawoferrorswillbegreater。Inpracticetheattemptwillbemadetoincreasethenumbertosuchapointthatfurtherincreaseandtheclosercorrespondenceresultingwillnolongercompensateforthetimerequired。

  Ifthenumberoftheseriesinagiventestislessened,thedesiredcorrespondencewillalsopresumablydecrease。However,itisdesirablethateventhentheapproximationtothetheoreticallydemandeddistributionremainperceptible。

  Eventhisrequirementisfulfilledbythenumericalvaluesobtained。

  Inthetwolargestseriesoftestsjustdescribed,Ihaveexaminedthevaryinglengthoftimenecessaryforthememorisationofthefirsthalfofeachtest。Intheolderseries,thesearetheperiodsrequiredbyeach4seriesofsyllables,inthemorerecentseriestheperiodsrequiredbyeach3ofthemtakentogether。Theresultsareasfollows:

  1。Intheformerseries:meanvalue(m)=533(P。E。o)

  =±51。

  2。Inthelaterseries:m=620,P。E。o=±44。

  Bybothtablesthesuppositionmentionedaboveoftheexistenceofalessperfectbutstillperceptiblecorrespondencebetweentheobservedandcalculateddistributionofthenumbersiswellconfirmed。

  Exactlythesameapproximatecorrespondencemustbepresupposedif,insteadofdecreasingthenumberofseriescombinedintoatest,thetotalnumberoftestsismadesmaller。InthiscasealsoIwilladdsomeconfirmatorysummaries。

  Ipossesstwolongtestseries,madeatthetimeoftheearliertests,whichwereobtainedunderthesameconditionsastheabovementionedseriesbutatthelatertimesoftheday,B。andC。

  Oneofthese,B,comprised39testsof6serieseach,theother,C,38testsof8serieseach,eachseriescontaining13syllables。Theresultsobtainedwereasfollows:ForthetestsattimeB:m=871,P。E。o=±63。ForthetestoftimeC:m=1,258,P。E。o=±60。

  InadditionImentionaseriesofonlytwentytests,withwhichIshallconcludethissummary。Eachtestconsistedofthelearningofeightseparateseriesofthirteensyllableseach,whichhadbeenmemorisedonceonemonthbefore。Theaveragewasinthiscase892secondswithaprobableerrorofobservationof54。Thesinglevaluesweregroupedasfollows:

  Althoughthenumberofthetestswassosmall,theaccordancebetweenthecalculationbytheoryandtheactualcountofdeviationsisinallthesecasessoclosethattheusefulnessofthemeanvalueswillbeadmitted,thewidelimitsoferrorbeing,ofcourse,takenintoconsideration。Section18。GroupingoftheResultsoftheSeparateSeriesThepreviouslymentionedhypothesesconcerningthegroupingofthetimesnecessaryforlearningtheseparateserieswerenaturallynotmerelytheoreticalsuppositions,buthadalreadybeenconfirmedbythegroupingsactuallyfound。Thetwolargeseriesoftestsmentionedabove,oneconsistingof92testsofeightsingleserieseach,andtheotherof84

  testsof6singleserieseach,thusgiving736and504separatevaluesrespectively,affordasufficientlybroadbasisforjudgment。Bothgroupsofnumbers,andbothinthesameway,showthefollowingpeculiarities:

  1。Thedistributionofthearithmeticalvaluesabovetheirmeanisconsiderablylooserandextendsfartherthanbelowthemean。Themostextremevaluesabovelie2timesand1。8times,respectively,asfarfromthemeanasthemostdistantofthosebelow。

  2。Asaresultofthisdominancebythehighernumbersthemeanisdisplacedupwardfromtheregionofthedensestdistribution,andasaresultthedeviationsbelowgetthepreponderanceinnumber。Thereoccurrespectively404and266deviationsbelowasagainst329and230above。

  3。Thenumberofdeviationsfromtheregionofdensestdistributiontowardsbothlimitsdoesnotdecreaseuniformly——asonewouldbeverymuchinclinedtoexpectfromtherelativelylargenumberscombined——butseveralmaximaandminimaofdensityaredistinctlynoticeable。Thereforeconstantsourcesoferrorwereatworkintheproductionoftheseparatevalues——i。e。,inthememorisationoftheseparateseries。Theseresultedontheonehandinanunsymmetricaldistributionofthenumbers,andontheotherhandinanaccumulationofthemincertainregions。Inaccordancewiththeinvestigationsalreadypresentedinthischapter,itcanonlybesupposedthattheseinfluencescompensatedeachotherwhenthevaluesofseveralserieslearnedinsuccessionwerecombined。

  Ihavealreadymentionedastheprobablecauseofthisunsymmetricaldistributionthepeculiarvariationsintheeffectofhighdegreesofconcentrationofattentionanddistraction。Itwouldnaturallybesupposedthatthepositionoftheseparateserieswithineachtestisthecauseoftherepeatedpilingupofvaluesoneachsideoftheaverage。If,inthecaseofalargetest-series,thevaluesaresummedupforthefirst,thesecond,andthirdseries,etc。,andtheaverageofeachistaken,theseaveragevaluesvarygreatly,asmightbeexpected。Theseparatevaluesaregroupedabouttheirmeanwithonlytolerableapproximationtothelawoferror,butyettheyare,onthewhole,distributedmostdenselyinitsregion,andtheseseparateregionsofdensedistributionmustofcourseappearinthetotalresult。

  Thefollowingmaybeaddedbywayofsupplement:onaccountofthementalfatiguewhichincreasesgraduallyduringthecourseofatest-seriesthemeanvaluesoughttoincreasewiththenumberoftheseries;butthisdoesnotprovetobethecase。

  OnlyinonecasehaveIbeenabletonoticeanythingcorrespondingtothishypothesis,namely,inthelargeandthereforeimportantseriesof92testsconsistingofeightseriesof13syllableseach。Inthiscasethemeanvaluesforthelearningofthe92firstseries,the92secondseries,etc。,werefoundtobe105,140,142,146,148,140seconds,therelativelengthsofwhichFig2exhibits。ForalltherestofthecaseswhichIinvestigatedthetypicalfactis,onthecontrary,rathersuchacourseofthenumbersaswastrueinthecaseoftheseriesof84testsofsixseriesof16syllableseachandasisshowninFig。3。

  Themeanvaluesherewere191,224,206,218,210,213seconds。Theystartin,asmaybeseen,considerablybelowtheaverage,butriseimmediatelytoaheightwhichisnotagainreachedinthefurthercourseofthetest,andtheythenoscillateratherdecidedly。Ananalogouscourseisshownbythenumbersinthe7testsofnine12-syllableseries,namely:71,90,98,87,98,90,101,86,69(Fig。4)。

  Furthermorethevaluesfor39testsofsixseriesof13syllableseachobtainedintimeBwereasfollows:118,150,158,147,155,144(Fig。

  5lowercurve)。

  Thosefor38testswitheight13syllableseriesoftimeCwere139,159,167,168,160,150,162,153(Fig。5uppercurve)。

  FinallythenumbersobtainedfromseventestswithsixstanzasofByron’s\"DonJuan\"were:189,219,171,204183,229。

  Eveninthecaseofthefirstmentionedcontradictorygroupoftestsagroupingoftheseparatemeanvaluesharmonisingwiththenormaloneoccursif,insteadofallthe92testsbeingtakenintoconsiderationatonce,theyaredividedintoseveralparts——i。e。,iftestsarecombinedwhichweretakenataboutthesametimeandunderaboutthesameconditions。

  Theconclusioncannotbedrawnfromthesenumericalresultsthatthementalfatiguewhichgraduallyincreasedduringthetwentyminutedurationofthetestsdidnotexertanyinfluence。

  Itcanonlybesaidthatthesupposedinfluenceofthelatteruponthenumbersisfaroutweighedbyanothertendencywhichwouldnotaprioribesoreadilysuspected,namelythetendencyofcomparativelylowvaluestobefollowedbycomparativelyhighonesandviceversa。Thereseemstoexistakindofperiodicaloscillationofmentalreceptivityorattentioninconnectionwithwhichtheincreasingfatigueexpressesitselfbyfluctuationsaroundamedianpositionwhichisgraduallydisplaced。[2]

  Afterorientingourselvesthusconcerningthenatureandvalueofthenumericalresultsgainedfromthecompletememorisations,weshallnowturntotherealpurposeoftheinvestigation,namelythenumericaldescriptionofcausalrelations。

  Footnotes[1]Ofcourse,theexactnessobtainedherecannotstandcomparisonwithphysicalmeasurements,butitcanverywellbecomparedwithphysiologicalones,whichwouldnaturallybethefirsttobethoughtofinthisconnection。TothemostexactofphysiologicalmeasurementsbelongthelastdeterminationsofthespeedofnervoustransmissionmadebyHelmholtzandBaxt。Onerecordoftheseresearchespublishedasanillustrationoftheiraccuracy(Mon。Ber,d。Berl。Akad。1870,S。191)afterpropercalculationgivesameanvalueof4。268withtheprobableerrorofobservation,0。101。Theintervalitincludesamounts,therefore,to5percentofthemeanvalue。Allformerdeterminationsaremuchmoreinaccurate。Inthecaseofthemostaccuratetest-seriesofthefirstmeasurementsmadebyHelmholtz,thatintervalamountstoabout50percentofthemeanvalue(Arch。f。Anat。u……Physiol。1850,S。340)。EvenPhysics,inthecaseofitspioneerinvestigations,hasoftenbeenobligedtoputupwithalessdegreeofaccuracyinitsnumericalresults。InthecaseofhisfirstdeterminationsofthemechanicalequivalentofheatJoulefoundthenumber838,withaprobableerrorofobservationof97。(Phil。Mag。,1843,p。435ff。)

  [2]Ifitshouldeverbecomeamatterofinteresttheattemptmightbemadetodefinenumericallythedifferenteffectsofthattendencyindifferentcases。Fortheprobableerrorsofobservationforthenumericalvaluesofseries-groupsaffordameasurefortheinfluenceofaccidentaldisturbancestowhichthememorisationisdailyexposed。

  Ifnowthelearningoftheseparateseriesingeneralwereexposedtothesameofsimilarvariationsofconditionasoccurfromtesttotest,thenaccordingtothefundamentalprinciplesofthetheoryoferrors,aprobableerrorofobservationcalculateddirectlyfromthespearatevalueswouldrelateitselftotheonejustmentionedas1to[thesquarerootof]n,where\"n\"denotesthenumberofseparateseriescombinedintoatest。Ifhowever,asisthecasehere,specialinfluencesassertthemselvesduringthememorisationoftheseseparateseries,andifsuchinfluencestendtoseparatethevaluesfurtherthanothervariationsofconditionswoulddo,the\"P。E。0\"calculatedfromtheseparatevaluesmustturnoutsomewhattoogreat,andthejustmentionedproportionconsequentlytoosmall,andthestrongertheinfluencesare,themoremustthisbethecase。

  Anexaminationoftheactualrelationsis,tobesure,alittledifficult,butfullyconfirmsthestatements。Inthe84tests,consistingofsixseriesof16syllableseach,the[squarerootof]n=2。45。Wefound48。4tobetheprobableerrorofobservationofthe84tests。Theprobableerrorofthe504separatevaluesis31。6。Thequotient31。6:48。4is1。53;thereforenotquite2/3ofthevalueof[thesquarerootof]n。

  ClassicsintheHistoryofPsychology——Ebbinghaus(1885)Chapter5Memory:AContributiontoExperimentalPsychologyHermannEbbinghaus(1885)TranslatedbyHenryA。Ruger&ClaraE。Bussenius(1913)CHAPTERVRAPIDITYOFLEARNINGSERIESOFSYLLABLESASAFUNCTIONOFTHEIR

  LENGTHSection19。TestsBelongingtotheLaterPeriodItissufficientlywellknownthatthememorisationofaseriesofideasthatistobereproducedatalatertimeismoredifficult,thelongertheseriesis。Thatis,thememorisationnotonlyrequiresmoretimetakenbyitself,becauseeachrepetitionlastslonger,butitalsorequiresmoretimerelativelybecauseanincreasednumberofrepetitionsbecomesnecessary。

  Sixversesofapoemrequireforlearningnotonlythreetimesasmuchtimeastwobutconsiderablymorethanthat。

  Ididnotinvestigateespeciallythisrelationofdependence,whichofcoursebecomesevidentalsointhefirstpossiblereproductionofseriesofnonsensesyllables,butincidentallyIobtainedafewnumericalvaluesforitwhichareworthputtingdown,althoughtheydonotshowparticularlyinterestingrelations。

  Theseriesinquestioncomprised(inthecaseofthetestsoftheyear1883-84),12,16,24,or36syllableseach,and9,6,3,or2serieswereeachtimecombinedintoatest。

  Forthenumberofrepetitionsnecessaryinthesecasestomemorisetheseriesuptothefirsterrorlessreproduction(andincludingit)thefollowingnumericalresultswerefound:

  Inordertomakethenumberofrepetitionscomparableitisnecessary,sotospeak,toreducethemtoacommondenominatorandtodividethemeachtimebythenumberoftheseries。Inthiswayitisfoundouthowmanyrepetitionsrelativelywerenecessarytolearnbyheartthesingleseries,whichdifferfromeachotheronlyinthenumberofsyllables,andwhicheachtimehadbeentakentogetherwithasmanyothersofthesamekindaswouldmakethedurationofthewholetestfromfifteentothirtyminutes。[1]

  However,aconclusioncanbedrawnfromthefiguresfromthestandpointofdecreaseinnumberofsyllablesThequestioncanheasked:Whatnumberofsyllablescanbecorrectlyrecitedafteronlyonereading?Formethenumberisusuallyseven。IndeedIhaveoftensucceededinreproducingeightsyllables,butthishashappenedonlyatthebeginningofthetestsandinadecidedminorityofthecases。Inthecaseofsixsyllablesontheotherhandamistakealmostneveroccurs;withthem,therefore,asingleattentivereadinginvolvesanunnecessarilylargeexpenditureofenergyforanimmediatelyfollowingreproduction。

  Ifthislatterpairofvaluesisadded,therequireddivisionmade,andthelastfaultlessreproductionsubtractedasnotnecessaryforthelearning,thenthefollowingtableresults。

  NumberofsyllablesinaseriesNumberofrepetitionsnecessaryforfirsterrorlessreproduction(exclusiveofit)Probableerror71

  1216。6±1。1

  1630。0±0。4

  2444。0±1。7

  3955。0±2。8ThelongerofthetwoadjoiningcurvesofFig。6illustratestheregularcourseofthesenumberswithapproximateaccuracyforsuchasmallnumberoftests。AsFig。6shows,inthecasesexamined,thenumberofrepetitionsnecessaryforthememorisationofseriesinwhichthenumberofsyllablesprogressivelyincreased,itselfincreaseswithextraordinaryrapiditywiththeincreaseinnumberofthesyllables。

  Atfirsttheascentofthecurveisverysteep,butlateronitappearstograduallyflattenout。Forthemasteryoffivetimesthenumberofsyllablesthatcanbereproducedafterbutonereading——i。e。,afterabout3secondsover50repetitionswerenecessary,requiringanuninterruptedandconcentratedeffortforfifteenminutes。

  Thecurvehasitsnaturalstartingpointinthezeropointoftheco-ordinates。

  Theshortinitialstretchuptothepoint,x=7,y=1,canbeexplainedthus:

  inordertorecitebyheartseriesof6,5,4,etc。,syllablesonereading,ofcourse,isallthatisnecessary。Inmyeasethisreadingdoesnotrequireasmuchattentionasdoesthe7-syllableone,butcanbecomemoreandmoresuperficialasthenumberofsyllablesdecreases。Section20。TestsBelongingtotheEarlierPeriodItgoeswithoutsayingthatsincetheresultsreportedwereobtainedfromonlyonepersontheyhavemeaningonlyasrelatedtohim。Thequestionariseswhethertheyareforthisindividualofageneralsignificance——i。e。,whether,byrepetitionofthetestsatanothertime,theycouldbeexpectedtoshowapproximatelythesameamountandgrouping。

  Aseriesofresultsfromtheearlierperiodfurnishesthedesiredpossibilityofacontrolinthisdirection。They,again,havebeenobtainedincidentally(consequentlyuninfluencedbyexpectationsandsuppositions)andfromtestsmadeunderdifferentconditionsthanthosementioned。Theseearliertestsoccurredatanearlierhourofthedayandthelearningwascontinueduntiltheseparateseriescouldberecitedtwiceinsuccessionwithoutmistake。

  Atestcomprised15seriesof10syllableseach,or8\"\"13\"\"

  or6\"\"16\"\"

  or4\"\"19\"\"So,again,fourdifferentlengthsofserieshavebeentakenintoaccount,buttheirseparatevaluesliemuchclosertogether。

  Sincetherepetitions——whichareinquestionhere——werenotcountedatallintheearlierperiod,theirnumberhadtobecalculatedfromthetimes。Forthispurposethetableonp。31hasbeenusedaftercorrespondinginterpolation。Ifthenumbersfoundareimmediatelyreducedtooneserieseach,andifalongwithitthetworepetitionsrepresentingtherecitationaresubtractedasabove,weobtain:

  ThesmallercurveofFig。6exhibitsgraphicallythearrangementofthesenumbers。Asmaybeseen,thenumberofrepetitionsnecessaryforlearningequallylongserieswasalittlelargerintheearlierperiodthaninthelaterone。Becauseofitsuniformitythisrelationistobeattributedtodifferencesintheexperimentalconditions,toinaccuraciesinthecalculations,andperhapsalsototheincreasedtrainingofthelaterperiod。Theoldernumbersfallveryclosetothepositionofthelaterones,and——whatisofchiefimportance——thetwocurveslieascloselytogetherthroughouttheshortextentoftheircommoncourseascouldbedesiredfortestsseparatedby31/2yearsandunaffectedbyanypresuppositions。Thereisahighdegreeofprobability,then,infavorofthesuppositionthattherelationsofdependencepresentedinthosecurves,sincetheyremainedconstantoveralongintervaloftime,aretobeconsideredascharacteristicforthepersonconcerned,althoughtheyare,tobesure,onlyindividual。Section21。IncreaseinRapidityofLearningintheCaseofMeaningfulMaterialInordertokeepinmindthesimilaritiesanddifferencesbetweensenseandnonsensematerial,IoccasionallymadetestswiththeEnglishoriginalofByron’s\"DonJuan。\"TheseresultsdonotproperlybelongheresinceIdidnotvarythelengthoftheamounttobelearnedeachtimebutmemorisedoneachoccasiononlyseparatestanzas。Nevertheless,itisinterestingtomentionthenumberofrepetitionsnecessarybecauseoftheircontrastwiththenumericalresultsjustgiven。

  Thereareonlyseventests(1884)tobeconsidered,eachofwhichcomprisedsixstanzas。Whenthelatter,eachbyitself,werelearnedtothepointofthefirstpossiblereproduction,anaverageof52repetitions(P。E。m=±0。6)wasnecessaryforallsixtakentogether。Thus,eachstanzarequiredhardlyninerepetitions;or,iftheerrorlessreproductionisabstracted,scarcelyeightrepetitions。[2]

  Ifitisborninmindthateachstanzacontains80syllables(eachsyllable,however,consistingontheaverageoflessthanthreeletters)andifthenumberofrepetitionsherefoundiscomparedwiththeresultspresentedabove,thereisobtainedanapproximatenumericalexpressionfortheextraordinaryadvantagewhichthecombinedtiesofmeaning,rhythm,rhyme,andacommonlanguagegivetomaterialtobememorised。Iftheabovecurveisprojectedinimaginationstillfurtheralongitspresentcourse,thenitmustbesupposedthatIwouldhaverequired70to80repetitionsforthememorisationofaseriesof80to90nonsensesyllables。Whenthesyllableswereobjectivelyandsubjectivelyunitedbythetiesjustmentionedthisrequirementwasinmycasereducedtoaboutone-tenthofthatamount。

  Footnotes[1]Theobjectionmightbemadethat,bymeansofthisdivision,recoursemadedirectlytotheaveragesforthememorisingofthesingleseries,andthatinthiswaytheresultoftheFourthChapterisdisregarded。For,accordingtothat,theaveragesofthenumbersobtainedfromgroupsofseriescouldindeedbeusedforinvestigationintorelationsofdependence,buttheaveragesobtainedfromseparateseriescouldnotbesoused。Idonotclaim,however,thattheabovenumbers,thusobtainedbydivision,formthecorrectaverageforthenumbersbelongingtotheseparateseries,i。e。,thatthelattergroupthemselvesaccordingtothelawoferrors。Butthenumbersaretobeconsideredasaveragesforgroupsofseries,and,forthesakeofabettercomparisonwithothers——aconditionwhichinthenatureofthecasecouldnotbeeverywherethesame——ismadethesamebydivision。Theprobableerror,themeasureoftheiraccuracy,hasnotbeencalculatedfromthenumbersfortheseparateseriesbutfromthoseforthegroupsofseries。

  [2]Forthesakeofcorrectevaluationofthenumbersandcorrectconnectionwithpossibleindividualobservationspleasenotep。24,1。Inordertoprocureuniformityofmethodthestanzaswerealwaysreadthroughfrombeginningtoend;moredifficultpassageswerenotlearnedseparatelyandtheninserted。Ifthathadbeendone,thetimeswouldhavebeenmuchshorterandnothingcouldhavebeensaidaboutthenumberofrepetitions。Ofcoursethereadingwasdoneatauniformrateofspeedasfaraspossible,butnotintheslowandmechanicallyregulatedtimethatwasemployedfortheseriesofsyllables。Theregulationofspeedwaslefttofreeestimation。Asinglereadingofonestanzarequired20

  to23seconds。

  ClassicsintheHistoryofPsychology——Ebbinghaus(1885)Chapter7Memory:AContributiontoExperimentalPsychologyHermannEbbinghaus(1885)TranslatedbyHenryA。Ruger&ClaraE。Bussenius(1913)CHAPTERVIIRETENTTONANDOBLIVISCENCEASAFUNCTIONOFTHETIMESection26。Exp1anationsofRetentionandObliviscenceAllsortsofideas,iflefttothemselves,aregraduallyforgotten。

  Thisfactisgenerallyknown。Groupsorseriesofideaswhichatfirstwecouldeasilyrecollectorwhichrecurredfrequentlyoftheirownaccordandinlivelycolors,graduallyreturnmorerarelyandinpalercolors,andcanbereproducedbyvoluntaryeffortonlywithdifficultyandinpart。

  Afteralongerperiodeventhisfails,except,tobesure,inrareinstances。

  Names,faces,bitsofknowledgeandexperiencethathadseemedlostforyearssuddenlyappearbeforethemind,especiallyindreams,witheverydetailpresentandingreatvividness;anditishardtoseewhencetheycameandhowtheymanagedtokeephiddensowellinthemeantime。Psychologists——eachinaccordancewithhisgeneralstandpoint——interpretthesefactsfromdifferentpointsofview,whichdonotexcludeeachotherentirelybutstilldonotquiteharmonise。Oneset,itseems,laysmostimportanceontheremarkablerecurrenceofvividimagesevenafterlongperiods。Theysupposethatoftheperceptionscausedbyexternalimpressionsthereremainpaleimages,\"traces,\"which,althoughineveryrespectweakerandmoreflightythantheoriginalperceptions,continuetoexistunchangedintheintensitypossessedatpresent。Thesementalimagescannotcompetewiththemuchmoreintenseandcompactperceptionsofreallife;butwherethelatteraremissingentirelyorpartly,theformerdomineerallthemoreunrestrainedly。Itisalsotruethattheearlierimagesaremoreandmoreoverlaid,sotospeak,andcoveredbythelaterones。Therefore,inthecaseoftheearlierimages,thepossibilityofrecurrenceoffersitselfmorerarelyandwithgreaterdifficulty。Butif,byanaccidentalandfavorablegroupingofcircumstances,theaccumulatedlayersarepushedtooneside,then,ofcourse,thatwhichwashiddenbeneathmustalppear,afterwhateverlapseoftime,initsoriginalandstillexistentvividness。[1]

  Forothers[2]theideas,thepersistingimages,sufferchangesmoreandmoreaffecttheirnature;theconceptofobscurationcomesinhere。

  Olderideasarerepressedandforcedtosinkdown,sotospeak,bythemorerecentones。Astimepassesoneofthesegeneralqualities,innerclearnessandintensityofconsciousness,suffersdamage。Connectionsofideasandseriesofideasaresubjecttothesameprocessofprogressiveweakening;itisfurtheredbyaresolutionoftheideasintotheircomponents,asaresultofwhichthenowbutlooselyconnectedmembersareeventuallyunitedinnewcombinations。Thecompletedisappearanceofthemoreandmorerepressedideasoccursonlyafteralongtime。Butoneshouldnotimaginetherepressedideasintheirtimeofobscurationtobepaleimages,butrathertobetendencies,\"dispositions,\"torecreatetheimagecontentsforcedtosinkdown。Ifthesedispositionsaresomehowsupportedandstrengthened,itmayhappenatanyonemomentthattherepressingandhinderingideasbecomedepressedthemselves,andthattheapparentlyforgottenideaarisesagaininperfectclearness。

点击下载App,搜索"Memory",免费读到尾