What,then,isreallyimpliedinthedoctrinethatallknowledgerestsuponexperience?OneofMill’sintellectualancestorslaysdownthefundamentalprinciple。Itisabsurd,saysHume,39*totrytodemonstratematteroffactbyaprioriarguments。’Nothingisdemonstrableunlessthecontraryimpliesacontradiction。Nothingthatisdistinctlyconceivableimpliesacontradiction。Whateverweconceiveasexistentwecanalsoconceiveasnon-existent。Thereisnobeing,therefore,whoanon-existenceimpliesacontradiction。’’Matteroffact,’then,mustbeprovedbyexperience;but,givena’fact’wemaydeducenecessaryconsequences。Allnecessitymaybehypothetical;thereisan’if’toevery’must,’butrememberingthe’if’the’must’
willbeharmless。Itcannevertakeusbeyondexperience。Theexistenceofspaceitselfcannotbecallednecessary;butspaceoncegiven,allgeometrymay’necessarily’follow,andimplyrelationsrunningthroughthewholefabricofscientificknowledge。Millagreesthata’hypothetical’necessityofthiskindbelongstogeometry;andadds,thatinanysciencewhatever,wemight,bymakinghypotheses,arriveatanequalnecessity。40*Butthen,hegoesontourge,thehypothesesofgeometryarenot’absolutetruths,’but’generalisationsfromobservation,’or’inductionsfromtheevidenceofoursenses,’41*which,therefore,arenotnecessarilytrue。Thisledtohiskeenestcontroversies,and,inmyopinion,tohisleastsuccessfulanswers。HeespeciallyclaimscreditinhisAutobiographyforhavingattackedthe’stronghold’oftheintuitionistsbyupsettingbeliefintheaprioricertaintyofmathematicalaphorisms。Infact,hisopponentsconstantlyappealedtothecaseofmathematics,andMillassumesthattheycanbemetonlybyreducingsuchtruthstothecaseofpurelyempiricaltruths。Hearguesboldlythatthe’characterofnecessityascribedtothetruthsofmathematics’is’anillusion。’42*Geometryandarithmeticarebothfoundeduponexperienceorobservation。Hegoesindeedstillfurtherattimes。
Atoneplaceheevenholdsthattheprincipleofcontradictionitselfissimply,oneofourfirstandmostfamiliargeneralisationsfromexperience。’Weknow,’bythesimplestobservationofourownminds,’thatbeliefanddisbeliefexcludeeachother,andthatwhenlightispresentdarknessisabsent。43*Millthoughthimselfbound,wesee,torefertoexperiencenotonlyourknowledgeoffacts,buteventhecapacities,whicharesaidbyanotherschooltobetheconditionsofperceivingandthusacquiringexperience。IfhehadstudiedKant,hemighthavereachedabetterversionofhisownview。Asitwas,hewasledtoacceptingparadoxeswhichhewasnotreallyconcernedtomaintain。Hehadtochoosebetweenatheoryof’intuitions’——sounderstoodastoentitleustoassertmatteroffactindependentlyofexperience——andatheorywhichseemstomakeeventheprimaryintellectualoperationsmerestatementsofempiricalfact。Sincenecessarystatementsaboutmattersoffactmustbeimpossible,hearguesthatwecannotevendrawnecessaryinferencesfromobservedfact。Notcontentwithsayingthatallnecessityishypothetical,hearguesthatallnecessity,eventhelogicalnecessityofcontradiction,isafigment。Ifhedoesnotcarryoutatheorywhichwouldseemtomakeallreasoningunsatisfactory,hemaintains,atleast,thatthehypothesesorassumptionsinvolvedingeometry,andeveninarithmetic,aregeneralisedfromexperience,and’seldom,ifever,exactlytrue。’Iftheassumptionsareinaccurateoruncertain,thewholesuperstructureofsciencemustalsobeuncertain。
Thenatureofhisargumentfollowsfromhispreviouspositions。Hetreatsspaceandnumberassomehowqualitiesofthe’things,’orasattributeswhichweobservewithoutinanysensesupplyingthem。Hisargumentupongeometrybeginsbyassertingthattherearenosuch’realthings’aspointsorlinesorcircles。Nay,theyarenotevenpossible,sofaraswecansee,consistentlywiththeactualconstitutionoftheuniverse。Itis’customary’toanswerthatsuchlinesonlyexistinourminds,andhavethereforenothingtodowithoutwardexperience。44*
This,however,isincorrectpsychologically,becauseourideasarecopiesoftherealities。Alinewithoutbreadthis’inconceivable,’andthereforedoesnotexisteveninthemind。
Hencewemustsupposethatgeometrydealseitherwith’non-entities’orwith’naturalobjects。’45*Arithmeticfareslittlebetter。Whenwesaythattwoandonemakethree,weassertthatthesamepebblesmay,’byanalterationofplaceandarrangement’——thatis,bybeingformedintooneparcelortwo——bemadetoproduceeithersetofsensations。46*Eachofthenumbers,2,3,4,etc。,hesayselsewhere,’denotesphysicalphenomenaandconnotesaphysicalpropertyofthosephenomena。’47*Arithmeticowesitspositiontothe’fortunateapplicability’toitofthe’inductivetruth’thatthesumsofequals’areequal。’48*Itisobvioustoremarkthatthisisonlytrueofcertainapplicationsofarithmetic。Whenwespeakofthenumbersofapopulation,weimply,asMilladmits,noequalityexceptthateachpersonisaunit。49*Wemayspeakwithequalproprietyofanumberofsyllogismsorofmetaphors,inwhichwehavenothingtodowith’equality’or’physicalproperties’atall。Further,asheobserves,50*itisthepeculiarityofthecasethatcountingonethingistocountallthings。WhenIseethatfourpebblesaretwopairsofpebbles,I
seethesametruthforallcases,including,forexample,syllogisms。Milladmits,accordingly,that’inquestionsofpurenumber’——thoughonlyinsuchquestions——theassumptionsare’exactlytrue,’andapparentlyholdsthatwemaydeduceexactlytrueconclusions。Thatoughttohavebeenenoughforhim。Hehadreallynosufficientreasonfordeprivingusofourarithmeticalfaith。Hecanhimselfpointoutitsharmlessness。Ashetrulysays,’fromlawsofspareandnumberalonenothingcanbededucedbutlawsofspareandnumber。’51*Werannevergetoutsideoftheworldofexperienceandobservationbyapplyingthem。Ifwecount,wedonotsaythattheremustbefourthings,butthatwherevertherearefourthingstherearealsotwopairsofthings。Theunlucky’pebble’argumentillustratesoneconfusion。
’Twoandtwoarefour’ischangedinto’twoandtwomakefour。’
Thestatementofaconstantrelationismadeintoastatementofanevent。Twopebblesaddedtotwomightproduceafifth,buttheoriginaltwopairswouldstillbefour。Thespace-problemsuggestsgreaterdifficulties。Space,heargues,musteitherbeapropertyofthingsoranideainourminds,andthereforea’non-entity。’Ifweconsiderit,however,tobeaformofperception,thedisjunctionceasestobevalid。Thespace-perceptionsmarktheborder-linebetween’object’and’subject,’andwecannotplaceitsproductineithersphereexclusively。Thespace-relationsare’subjective,’becausetheyimplyperceptionbythemind,butobjectivebecausetheyimplytheactionofthemindasmind,anddonotvaryfromonepersonor’subject’toanother。Tosaywhethertheywereobjectiveorsubjectiveabsolutelyweshouldhavetogetoutsideofourmindsaltogether——whichisanimpossiblefeat。Therefore,again,itisnotreallytothepurposetoallegethatsucha’thing’asastraightlineoraperfectcircleneverexists。Whetherwesaythatacurvedeviatesfromorconformstoperfectcircularity,weequallyadmittheexistenceofaperfectcircle。Wemaybeunabletomarkitwithfingerormicrometer,butitisthere。Ifnotwolinesareexactlyequal,thatmustbebecauseonehasmoresparethantheother。Mill’sargumentseemstoinvolvetheconfusionbetweenthestatementthatthingsdifferinspaceandthestatement,whichwouldbesurelynonsense,thatthespareitselfdiffers。Itistotransferthedifferencefromthethingsmeasuredtothemeasureitself。Itisjustthepeculiarityofspacethatitcanonlybemeasuredbyspace;andthattosayonespaceisgreaterthananother,issimplytosay,’thereismorespace。’Asinthecaseofnumber,heisreallymakinganillegitimatetransferfromonespheretoanother。Astraightlineisasymmetricaldivisionofspace,whichmustbetakentoexist,thoughwecannotmakeaperfectlystraightline。Ourinabilitydoesnottendtoprovethatthe’space’itselfisvariable。Inapplyingameasurewenecessarilyassumeitsconstancy;anditisdifficulteventounderstandwhat’variability’means,unlessitisvariabilityinreferencetosomeassumedstandard。If,asMillseemstothink,spaceisapropertyofthings,varyinglikeotherproperties,wehavetoask,Inwhat,then,doesitvary?Allotherpropertiesvaryinrespectoftheirspace-relations;but,ifspaceitselfbevariable,weseemtobereducedtohopelessincoherence。
Thus,toascribenecessitytogeometryaswellastoarithmeticisnottoascribe’necessity’topropositionstouseHume’slanguageagainabout’mattersoffact。’The’necessity’
isimpliedinapeculiaritywhichMillhimselfputsveryforcibly,52*andwhichseemstobeallthatiswanted。Anarithmeticalformulaofthesimplestormostcomplexkindisanassertionthattwowaysofconsideringafactareidentical。WhenIsaythattwoandtwomakefour,orlaydownsomealgebraicalformula,suchasTaylor’stheorem,Iamassertingthepreciseequivalenceoftwoprocesses。Idonotevensaythattwoandtwomustmakefour,butthat,iftheymakefour,theycannotalsoorevermakefive。Thenumberisthesameinwhateverorderwecount,solongaswecountalltheunits,andcountthemcorrectly。SomuchisimpliedinMill’sobservationthatcountingonesetofthingsiscountingallthings。Theconcretecircumstancesmakenodifference。Thesameistrueofgeometry。
Thecomplexfiguremaybealsoregardedasacombinationofsimplerfigures。Itremainspreciselythesame,thoughweperceivethatbesidesbeingonefigureitisalsoacombinationoffigures。Thisrunsthroughallmathematicaltruths,and,I
think,indicatesMill’sprecisedifficulty。Hesaysquitetrulythattoknowtheexistenceofafactyoumustalwayshavesomethinggivenbyobservationorexperience。Themostcomplexmathematicalformulaemaystillberegardedasequatingdifferentstatementsofthesameexperience。Thedifferenceisonlythattheexperienceisevolvedintomorecomplexforms,notbyanychangeinthedatasupplied,butbyanintellectualoperationwhichconsistsessentiallyinorganisingthedatainvariousways。Thereasonerdoesnotforaninstantdesertfact;heonlyperceivesthatitmaybecontemplatedindifferentways,andthatverydifferentstatementsasserttheverysamefactorfacts。Ourexperiencemaybeincreased,eitherbytheentranceofnewobjectsintoourfieldofobservation,orbythedifferentmethodsofcontemplation。Themathematiciandealswithpropositionswhichremainequallytrueifwesupposenochangewhatevertotakeplaceintheworld,or,asMillputsit,’ifalltheobjectsoftheuniversewereunchangeablyfixed。’53*Histheories,inshort,constructamaponwhichhecanafterwardslaydownthechangeswhichinvolvetime。Thefillingupofthemapdependsentirelyuponobservationandexperience;buttomakethemapitselfamerebundleofaccidentalcoexistencesistodestroytheconditionsofexperience。Themapisourownfacultyofperception。
’Thereissomethingwhichseemstorequireexplanation,’saysMill,54*’inthefactthatanimmensemultitudeofmathematicaltruths……canbeelicitedfromsosmallanumberofelementarylaws。’ItispuzzlingwhenyouidentifyNewtonwithDiamondonthegroundthattheybothseethesame’fact。’Butitisnomorepuzzlingthananythingelse,asindeedMillproceedstoshow,whenweobservethemethodbywhichinarithmetic,forexample,anindefinitenumberofrelationsisimpliedbythesimpleprocessofcounting。Thefactisthesameforallobservers,insofarastheyhavethesamedata;buttoperceivethedataalreadyimpliesthegermofthoughtfromwhichallthedemonstrativesciencesareevolved。Theknowledgecanbetransformedandcomplicatedtoanindefinitedegreebysimplyidentifyingdifferentwaysofcombiningthedata。Mill,inhisanxietytoadheretofactsandexperience,failstorecogniseadequatelytheprocessbywhichsimpleobservationisevolvedintocountlessmodifications。Thedifficultyappearsinitsextremeforminthecurioussuggestionthateventheprincipleofcontradictionisaproductofexperience。Millissoresolvedtoleavenothingforthemindtodo,thathesupposesaprimitivemindwhichisnotevenabletodistinguish’isnot’from’is。’Itishardtounderstandhowsucha’mind,’ifitwerea’mind,’