Thecogencyoftheargumentdependsupontheapplicabilityoftheruletothefact。Ifmenbenotmortal,or,again,ifSocratesbenotaman,theinferenceisnotvalid;andthesetwodistinctissues,theissueoflawandtheissueoffact,mayberaisedinanycase。27*Thevalueofthesyllogismisthatitraisestheseissuesdistinctly。Theargumentisthusputinsuchaformastobeabsolutelyconclusiveifthepremisesbethemselvesgranted。
Itthereforeprovidesatestofthevalidityofthelogic。
Grantingthepremises,adenialoftheinferencemustinvolveacontradiction。Thatistheonlytestinpurelogic。Thesyllogismmust,therefore,beinasensetautologous,forotherwiseitcouldnotbeconclusive。Acceptanceo?thepremisesmustbeshownfromtheformofstatementtonecessitatetheadmissionoftheinference。Thisfollows,andthelogicallinkiscompleteandirrefragable,ifthemiddletermbeidenticalinbothpremises,andnototherwise。ThisiswhatMillindicatesbysayingthat’therulesofthesyllogismarerulesforcompellingapersontobeawareofthewholeofwhathemustundertaketodefendifhepersistsinmaintaininghisconclusion。’28*Ratiocination,ashesumsuphisviewelsewhere,’doesnotconsistofsyllogisms’;
butthesyllogismisausefulformulaintowhichitcan’translateitsreasonings,’andsoguaranteetheircorrectness。29*Ifthisbegranted,wemustconsidertheessentialstepofinferencetobeembodiedin,butnotcreatedby,thesyllogism。Correctreasoningcanalwaysbethrownintothisform。Thesyllogismemergeswhenthereasoningiscomplete。
’Theuseofthesyllogismisnoother,’saysMill,’thantheuseofgeneralpropositionsinreasoning。’Itisasecurityforcorrectgeneralisation。30*Wehave,then,stilltoaskwhatisthereasoningprocessforwhichthesyllogismprovidesatest。
Generalisationimpliesclassification。Ourgeneralruleormajorpremisestatessomepropertyofaclasstowhichtheindividualbelongs。Thequestionishowthisreferencetoaclassenablesustodrawinferenceswhichwecouldnotdrawfromtheindividualcase。TothisMillgivesasimpleanswer,whichisalreadyimpliedinhistheoryofpredication。WhenIsaythatSocratesisaman,Isaythathehastheattributesconnotedbythename。Heisarational,featherlessbiped,forexample。ButIalreadyknowbyobservationthatwiththeseattributesgoestheattributeofmortality。Theessenceofthereasoningprocessisthereforethat,fromthepossessionofcertainattributes,Iinferthepossessionofanotherattributewhichhascoexistedwiththempreviously。ThatIdo,infact,reasoninthiswayincountlesscasesisundeniable。Iknowthatacertainquality,saymalleability,goesalongwithotherqualitiesofcolour,shape,andsoforth,bywhichIrecogniseasubstanceasgold。Ican,itmaybe,givenootherreasonforbelievingthefutureconjunctionofthosequalitiesthanthefactoftheirpreviousconjunction。
Thebelief,thatis,isasamatteroffactgeneratedsimplybythepreviouscoincidenceorcorrespondstoconstantassociation。
Whetherthisexhauststhewholelogicalsignificancemaystillbedisputed;but,atanyrate,uponthesetermswecanescapefromthechargeoftautology。Theruleinthemajorpremiseregistersanumberofpreviousexperiencesofcoexistence。Whenwenoticesomeoftheattributesinagivencase,wemakeanadditiontoourknowledgebyapplyingtherule,thatis,byinferringthatanotherattributemaybeaddedtotheobservedattributes。This,then,givesarationalaccountoftheadvanceinknowledgemadethroughthesyllogisminthecasewheretheclasscanbedefinedasasimplesumofattributes。
Butisthisanadequateaccountofthereasoningprocessingeneral?ThereisanotherviewwhichsuggesteddifficultiestoMill。Hissolutionofthesedifficulties,marked,aswelearnfromtheAutobiography,anessentialstageinthedevelopmentofhisdoctrine。Referencetoaclassis,uponhisinterpretation,impliedinthesyllogism;andclassificationimpliesdefinition。
Aclassmeansallthingswhichhaveacertainlistofattributesstatedinthedefinition。Maywenottheninferotherpropertiesfromthedefinition?Maynotmortality,forexample,bededuciblefromtheotherattributesofman?Theassumptionthatwecandosoisconnectedwiththefallacymostcharacteristicofthemisuseofthesyllogism。Itisplainthatwemaycreateasmanyclassesasweplease,andmakenamesforcombinationsofattributeswhichhavenoactual,orevennopossible,existence。
Anyinferenceswhichwemakeonthestrengthofsuchclassificationmustbenugatoryorsimplytautologous。Ishowthatacertainpropositionfollowsfrommydefinition;butthatgivesnoguaranteeforitsconformitytotherealitiesbehindthedefinition。Your’proof’thatamanismortalmeanssimplythatifheisnotmortalyoudon’tcallhimaman。Thesyllogismtreatedonthatsystembecomessimplyanelaborateseriesofdevicesforbeggingthequestion。Fromsuchmethodsariseallthefutilitiesofscholasticism,andthedoctrineofessenceswhich,thoughLockeconfutedit,31*has’neverceasedtopoisonphilosophy。’32*Itmay,Isuppose,betakenforgrantedthatthesyllogismwasconstantlyappliedtocoversuchfallacies,andsofarMillisonsafeground。Thetheory,however,leadshimtoacharacteristicpoint。AlreadyintheearlyreviewJanuary1828,hehadcriticisedWhately’saccountofdefinition。A’realdefinition,’asWhatelyhadsaid,’explainsandunfolds“thenature“ofthethingdefined,whereasa“nominaldefinition“onlyexplainsthename。’Whatelygoesontopointoutthattheonlyrealdefinitionsinthissensearethemathematicaldefinitions。
Itisimpossibletodiscoverthepropertiesofathing,aman,oraplantfromthedefinition。Ifitwerepossible,wemightproceedto’evolveacamelfromthedepthsofourconsciousness,’
andnobodynowprofessestobeequaltothatfeat。When,however,we’define’acircleoralineandsoforth,wemakeassertionsfromwhichwecandeducethewholetheoryofgeometry。A
geometricalfigurerepresentsavastcomplexoftruths,mutuallyimplyingeachother,andalldeduciblefromafewsimpledefinitions。Themiddletermisnotthenameofasimplething,orofathingwhichhasacertainsetofcoexistingattributes,butawordexpressiveofawholesystemofreciprocalrelations。
Ifonepropertyentitlesmetosaythatacertainfigureisacircle,Iamvirtuallydeclaringthatithasinnumerableotherproperties,andIamthusabletomakeinferenceswhich,althoughimplicitlygiven,arenotperceivedtillexplicitlystated。Byassigningathingtoaclass,IsayinthiscasethatImaymakeanyoneofanindefinitenumberofpropositionsaboutit,allmutuallyimplyingeachother,andrequiringthehighestfacultiesforcombiningandevolving。Puremathematicsgivetheonegreatexampleofavastbodyoftruthsreachedbypurelydeductiveprocesses。Theyappeartobeevolvedfromcertainsimpleandself-evidenttruths。Canthey,then,beexplainedassimplyempirical?Doweknowthepropertiesofacircleasweknowthepropertiesofgold,simplybycombiningrecordsofpreviousexperience?Orcanweadmitthatthisgreatsystemoftruthisallevolvedoutof’definitions’?
MillscentsinWhately’sdoctrineataintofaprioriassumption,andaccordinglymeetsitbyadirectcontradiction。A
geometricaldefinition,hesays,isnomorea’real’definitionthanthedefinitionofacamel。Nodefinitionwhatevercan’unfoldthenature’ofathing。Hestatesthisinhisreview,thoughitwasatalaterperiod,33*whenmeditatinguponapassageofDugaldStewart,thatheperceivedthefullconsequencesofhisownposition。InansweringWhately,hehadsaidthatalldefinitionswere’nominal。’A’realdefinition’
meansthattothedefinitionproperweaddthestatementthatthereisathingcorrespondingtothename。34*Thedefinitionitselfisa’mereidenticalproposition,’fromwhichwecanlearnnothingastofacts。Butitmaybeaccompaniedbyapostulatewhich’covertlyassertsafact,’andfromthefactmayfollowconsequencesofanydegreeofimportance。Thisdistinctionbetweenthedefinitionandthepostulatemaybeexhibited,asheremarks,bysubstituting’means’for’is。’Ifwesay:acentaur’means’abeinghalfmanandhalfhorse,wegiveapuredefinition。Ifwesay:aman’is’afeatherlessbiped,ourstatementincludesthedefinition——man’means’featherlessbiped;butifwesaidnomore,noinferencecouldbemadeastofacts。Ifwearereallytoincreaseourknowledgebyusingthisdefinition,wemustaddthe’covert’assertionthatsuchfeatherlessbipedsexist。Themathematicalcaseisidentical,Stewarthadarguedthatgeometricalpropositionsfollowed,notfromtheaxiomsbut,fromthedefinitions。Fromthebareaxiomthatifequalsbeaddedtoequalsthewholesareequal,youcaninfernothing。Youmustalsoperceivetheparticularfigureswhicharecompared。Ofcoursethetruthoftheaxiomsmustbeadmitted;buttheydonotspecifythefirstprinciplesfromwhichgeometryisevolved。Inotherwords,geometryimplies’intuition,’nottheapriori’intuitions’towhichMillobjected,butthedirectperceptionofthespatialrelations。Wemustseethefigureaswellasadmittheself-evidentaxiom。
Mill,onconsideringthisargument,thoughtthatStewarthadstoppedatahalftruth。35*Heoughttohavegotridofthedefinitionsaswellastheaxioms。EverydemonstrationinEuclid,saysMill,mightbecarriedonwithoutthem。Whenwearguefromadiagraminwhichthereisacircle,wedonotreallyrefertocirclesingeneral,butonlytotheparticularcirclebeforeus。
Ifitsradiibeequalorapproximatelyequal,theconclusionsaretrue。Weafterwardsextendourreasoningtosimilarcases;butonlyoneinstanceisdemonstrated。Thedefinitionismerelya’noticetoourselvesandothers,’statingwhatassumptionswethinkourselvesentitledtomake;andinthiswayitresemblesthemajorinthesyllogism。Thedemonstrationdoesnot’dependupon’it,thoughifwedenyit,thedemonstrationfails。Bythisargument,Millconceivesthatthecaseofmathematicsisputonalevelwithothercases。Wealwaysarguefromfacts,andmoreoverfrom’particularfacts,’notfromdefinitions。Westartfromanobservationofthisparticularcircle——asensible’thing’orobject,asinarguingaboutnaturalhistorywestartfromobservationofthecamel。Hencewemaylaydownthegeneralproposition,applicabletogeometryaswellastoallordinaryobservation,that,allinferenceisfromparticularstoparticulars。’36*Thisisthe’foundation’bothofInduction,whichis’popularlysaid’toreasonfromparticularstogenerals,andofDeduction,whichissupposedtoreasonfromgeneralstoparticulars。37*ThissumsupMill’scharacteristicposition。
III。MATHEMATICALTRUTHS
ThisattempttobringallreasoningtothesametypeforcesMilltoignorewhattoothersseemstobeoftheessenceofthecase。Thereare,hesays,twostatements:’Theremayexistafigureboundedbythreestraightlines’;thatisthefruitfulstatementoffacts。’Thisfigureiscalledatriangle’;thatisthemerelynominaldefinitionorexplanationofwords。Moreover,ashesays,wemaydropthedefinitionbysubstitutingtheequivalentwordsorsimplylookingatthething。Itdoesnotfollowthatwecandispensewiththemodeofapprehensionimpliedbythedefinition。Whetherweusethewordtriangle,orthewords,’threelinesenclosingaspace,’ornowordsatall,wemustequallyhavetheconceptionsorintuitionsoflinesandspace。Alldemonstrationingeometryconsistsinmentallyrearrangingacombinationoflinesandanglessoastoshowthatonefiguremaybemadetocoincideabsolutelywithanotherfigure。Theoriginalfactremainsunaltered,butthewaysofapprehendingthefactareinnumerable。NewtonandhisdogDiamondmightbothseethesamecircularthing;buttoDiamondthecirclewasasimpleroundobject;toNewtonitwasalsoacomplexsystemofrelatedlines,capableofbeingsoregardedastoembodyavastvarietyofelaborateformulae。38*Geometry,asMillundeniablysays,dealswithfacts。NewtonandDiamondhavepreciselythesamefactbeforethem。Itremainsthesame,whetherwestopatthesimpleststageorproceedtothemostcomplexevolutionofgeometry。ThedifferencebetweentheobserversisnotthatNewtonhasseennewfacts,butthatheseesmoreinthesamefact。Thechangeisnotinthethingsbutinthemind,which,bygroupingthethingsinthewaypointedoutbythedefinitions,isabletodiscovercountlessnewrelationsinvolvedinthesameperception。Thisagainmaysuggestthateventhefactrevealedtosimpleperceptionisnotabare’fact,’something,asMillputsit,’externaltothemind,’butisinsomesenseitselfconstitutedbythefacultyofperception。Itcontainsalreadythegermofthewholeintellectualevolution。Thechangeisnotinthethingperceived,butinthemodeofperceiving。And,therefore,again,wedonotacquirenewknowledge,asweacquireitinthephysicalsciences,byobservingnewfacts,discoveringresemblancesanddifferences,andgeneralisingfromthepropertiescommontoall;butbycontemplatingthesamefact。Allgeometryisinanyparticularspace——ifonlywecanfindit。Wedonotproceedbycomparinganumberofdifferentregionsofspaces,andinquirewhetherFrenchtriangleshavethesamepropertiesasEnglishtriangles。ToMill,however,thestatementthatgeometrydealswithfactleadstoanotherconclusion。Wemustdealwiththesefactsaswithotherfacts,andfollowthemethodofothernaturalsciences。Wereallyproceedinthesamewaywhetherweareinvestigatingthepropertiesofanellipseoracamel。Ineithercasewemustdiscovertruthbyexperience。