第49章
加入书架 A- A+
点击下载App,搜索"METAPHYSICS",免费读到尾

  falsity。Thisisalsowhyitusedtobesaidthatwemustassume

  somethingthatisfalse,asgeometersassumethelinewhichisnota

  footlongtobeafootlong。Butthiscannotbeso。Forneitherdo

  geometersassumeanythingfalsefortheenunciationisextraneous

  totheinference,norisitnon-beinginthissensethatthethings

  thatarearegeneratedfromorresolvedinto。Butsince’non-being’

  takeninitsvariouscaseshasasmanysensesastherearecategories,

  andbesidesthisthefalseissaidnottobe,andsoisthepotential,

  itisfromthisthatgenerationproceeds,manfromthatwhichisnot

  manbutpotentiallyman,andwhitefromthatwhichisnotwhitebut

  potentiallywhite,andthiswhetheritissomeonethingthatis

  generatedormany。

  Thequestionevidentlyis,howbeing,inthesenseof’the

  substances’,ismany;forthethingsthataregeneratedarenumbers

  andlinesandbodies。Nowitisstrangetoinquirehowbeinginthe

  senseofthe’what’ismany,andnothoweitherqualitiesor

  quantitiesaremany。Forsurelytheindefinitedyador’thegreat

  andthesmall’isnotareasonwhythereshouldbetwokindsof

  whiteormanycoloursorflavoursorshapes;forthenthesealsowould

  benumbersandunits。Butiftheyhadattackedtheseothercategories,

  theywouldhaveseenthecauseofthepluralityinsubstancesalso;

  forthesamethingorsomethinganalogousisthecause。This

  aberrationisthereasonalsowhyinseekingtheoppositeofbeingand

  theone,fromwhichwithbeingandtheonethethingsthatare

  proceed,theypositedtherelativetermi。e。theunequal,whichis

  neitherthecontrarynorthecontradictoryofthese,andisonekind

  ofbeingas’what’andqualityalsoare。

  Theyshouldhaveaskedthisquestionalso,howrelativeterms

  aremanyandnotone。Butasitis,theyinquirehowtherearemany

  unitsbesidesthefirst1,butdonotgoontoinquirehowthereare

  manyunequalsbesidestheunequal。Yettheyusethemandspeakof

  greatandsmall,manyandfewfromwhichproceednumbers,longand

  shortfromwhichproceedstheline,broadandnarrowfromwhich

  proceedstheplane,deepandshallowfromwhichproceedsolids;and

  theyspeakofyetmorekindsofrelativeterm。Whatisthereason,

  then,whythereisapluralityofthese?

  Itisnecessary,then,aswesay,topresupposeforeachthing

  thatwhichisitpotentially;andtheholderoftheseviewsfurther

  declaredwhatthatiswhichispotentiallya’this’andasubstance

  butisnotinitselfbeing-viz。thatitistherelativeasifhe

  hadsaid’thequalitative’,whichisneitherpotentiallytheoneor

  being,northenegationoftheonenorofbeing,butoneamongbeings。

  Anditwasmuchmorenecessary,aswesaid,ifhewasinquiringhow

  beingsaremany,nottoinquireaboutthoseinthesamecategory-how

  therearemanysubstancesormanyqualities-buthowbeingsasa

  wholearemany;forsomearesubstances,somemodifications,some

  relations。Inthecategoriesotherthansubstancethereisyetanother

  probleminvolvedintheexistenceofplurality。Sincetheyarenot

  separablefromsubstances,qualitiesandquantitiesaremanyjust

  becausetheirsubstratumbecomesandismany;yetthereoughttobe

  amatterforeachcategory;onlyitcannotbeseparablefrom

  substances。Butinthecaseof’thises’,itispossibletoexplainhow

  the’this’ismanythings,unlessathingistobetreatedasbotha

  ’this’andageneralcharacter。Thedifficultyarisingfromthe

  factsaboutsubstancesisratherthis,howthereareactuallymany

  substancesandnotone。

  Butfurther,ifthe’this’andthequantitativearenotthe

  same,wearenottoldhowandwhythethingsthatarearemany,but

  howquantitiesaremany。Forall’number’meansaquantity,andso

  doesthe’unit’,unlessitmeansameasureorthequantitatively

  indivisible。If,then,thequantitativeandthe’what’are

  different,wearenottoldwhenceorhowthe’what’ismany;butif

  anyonesaystheyarethesame,hehastofacemanyinconsistencies。

  Onemightfixone’sattentionalsoonthequestion,regarding

  thenumbers,whatjustifiesthebeliefthattheyexist。Tothe

  believerinIdeastheyprovidesomesortofcauseforexistingthings,

  sinceeachnumberisanIdea,andtheIdeaistootherthings

  somehoworotherthecauseoftheirbeing;forletthissuppositionbe

  grantedthem。Butasforhimwhodoesnotholdthisviewbecausehe

  seestheinherentobjectionstotheIdeassothatitisnotfor

  thisreasonthathepositsnumbers,butwhopositsmathematical

  number,whymustwebelievehisstatementthatsuchnumberexists,and

  ofwhatuseissuchnumbertootherthings?Neitherdoeshewhosays

  itexistsmaintainthatitisthecauseofanythingherathersaysit

  isathingexistingbyitself,norisitobservedtobethecause

  ofanything;forthetheoremsofarithmeticianswillallbefoundtrue

  evenofsensiblethings,aswassaidbefore。

  Asforthose,then,whosupposetheIdeastoexistandtobe

  numbers,bytheirassumptioninvirtueofthemethodofsettingout

  eachtermapartfromitsinstances-oftheunityofeachgeneralterm

  theytryatleasttoexplainsomehowwhynumbermustexist。Since

  theirreasons,however,areneitherconclusivenorinthemselves

  possible,onemustnot,forthesereasonsatleast,assertthe

  existenceofnumber。Again,thePythagoreans,becausetheysawmany

  attributesofnumbersbelongingtesensiblebodies,supposedreal

  thingstobenumbers-notseparablenumbers,however,butnumbersof

  whichrealthingsconsist。Butwhy?Becausetheattributesof

  numbersarepresentinamusicalscaleandintheheavensandin

  manyotherthings。Those,however,whosaythatmathematicalnumber

  aloneexistscannotaccordingtotheirhypothesessayanythingofthis

  sort,butitusedtobeurgedthatthesesensiblethingscouldnot

  bethesubjectofthesciences。Butwemaintainthattheyare,aswe

  saidbefore。Anditisevidentthattheobjectsofmathematicsdo

  notexistapart;foriftheyexistedaparttheirattributeswould

  nothavebeenpresentinbodies。NowthePythagoreansinthispoint

  areopentonoobjection;butinthattheyconstructnaturalbodies

  outofnumbers,thingsthathavelightnessandweightoutofthings

  thathavenotweightorlightness,theyseemtospeakofanother

  heavenandotherbodies,notofthesensible。Butthosewhomake

  numberseparableassumethatitbothexistsandisseparablebecause

  theaxiomswouldnotbetrueofsensiblethings,whilethe

  statementsofmathematicsaretrueand’greetthesoul’;andsimilarly

  withthespatialmagnitudesofmathematics。Itisevident,then,

  boththattherivaltheorywillsaythecontraryofthis,andthatthe

  difficultyweraisedjustnow,whyifnumbersareinnowaypresentin

  sensiblethingstheirattributesarepresentinsensiblethings,has

  tobesolvedbythosewhoholdtheseviews。

  Therearesomewho,becausethepointisthelimitandextreme

  oftheline,thelineoftheplane,andtheplaneofthesolid,

  thinktheremustberealthingsofthissort。Wemusttherefore

  examinethisargumenttoo,andseewhetheritisnotremarkably

  weak。Foriextremesarenotsubstances,butratherallthesethings

  arelimits。Forevenwalking,andmovementingeneral,hasalimit,so

  thatontheirtheorythiswillbea’this’andasubstance。Butthat

  isabsurd。Notbutwhatiieveniftheyaresubstances,theywill

  allbethesubstancesofthesensiblethingsinthisworld;forit

  istothesethattheargumentapplied。Whythenshouldtheybecapable

  ofexistingapart?

  Again,ifwearenottooeasilysatisfied,wemay,regardingall

  numberandtheobjectsofmathematics,pressthisdifficulty,that

  theycontributenothingtooneanother,thepriortotheposterior;

  forifnumberdidnotexist,nonethelessspatialmagnitudeswould

  existforthosewhomaintaintheexistenceoftheobjectsof

  mathematicsonly,andifspatialmagnitudesdidnotexist,souland

  sensiblebodieswouldexist。Buttheobservedfactsshowthatnature

  isnotaseriesofepisodes,likeabadtragedy。Asforthe

  believersintheIdeas,thisdifficultymissesthem;forthey

  constructspatialmagnitudesoutofmatterandnumber,linesoutof

  thenumberplanesdoubtlessoutofsolidsoutofortheyuseother

  numbers,whichmakesnodifference。Butwillthesemagnitudesbe

  Ideas,orwhatistheirmannerofexistence,andwhatdothey

  contributetothings?Thesecontributenothing,astheobjectsof

  mathematicscontributenothing。Butnotevenisanytheoremtrueof

  them,unlesswewanttochangetheobjectsofmathematicsandinvent

  doctrinesofourown。Butitisnothardtoassumeanyrandom

  hypothesesandspinoutalongstringofconclusions。These

  thinkers,then,arewronginthisway,inwantingtounitetheobjects

  ofmathematicswiththeIdeas。Andthosewhofirstpositedtwokinds

  ofnumber,thatoftheFormsandthatwhichismathematical,neither

  havesaidnorcansayhowmathematicalnumberistoexistandof

  whatitistoconsist。Fortheyplaceitbetweenidealandsensible

  number。Ifiitconsistsofthegreatandsmall,itwillbethesame

  astheother-ideal-numberhemakesspatialmagnitudesoutofsome

  othersmallandgreat。Andifiihenamessomeotherelement,he

  willbemakinghiselementsrathermany。Andiftheprincipleof

  eachofthetwokindsofnumberisa1,unitywillbesomethingcommon

  tothese,andwemustinquirehowtheoneisthesemanythings,

  whileatthesametimenumber,accordingtohim,cannotbegenerated

  exceptfromoneandanindefinitedyad。

  Allthisisabsurd,andconflictsbothwithitselfandwiththe

  probabilities,andweseemtoseeinitSimonides’longrigmarole’for

  thelongrigmarolecomesintoplay,likethoseofslaves,whenmen

  havenothingsoundtosay。Andtheveryelements-thegreatandthe

  small-seemtocryoutagainsttheviolencethatisdonetothem;for

  theycannotinanywaygeneratenumbersotherthanthosegotfrom1by

  doubling。

  Itisstrangealsotoattributegenerationtothingsthatare

  eternal,orratherthisisoneofthethingsthatareimpossible。

  ThereneedbenodoubtwhetherthePythagoreansattributegeneration

  tothemornot;fortheysayplainlythatwhentheonehadbeen

  constructed,whetheroutofplanesorofsurfaceorofseedorof

  elementswhichtheycannotexpress,immediatelythenearestpartof

  theunlimitedbegantobeconstrainedandlimitedbythelimit。But

  sincetheyareconstructingaworldandwishtospeakthelanguage

  ofnaturalscience,itisfairtomakesomeexaminationoftheir

  physicaltheorics,buttoletthemofffromthepresentinquiry;for

  weareinvestigatingtheprinciplesatworkinunchangeablethings,so

  thatitisnumbersofthiskindwhosegenesiswemuststudy。

  Thesethinkerssaythereisnogenerationoftheoddnumber,which

  evidentlyimpliesthatthereisgenerationoftheeven;andsome

  presenttheevenasproducedfirstfromunequals-thegreatandthe

  small-whentheseareequalized。Theinequality,then,mustbelongto

  thembeforetheyareequalized。Iftheyhadalwaysbeenequalized,

  theywouldnothavebeenunequalbefore;forthereisnothingbefore

  thatwhichisalways。Thereforeevidentlytheyarenotgivingtheir

  accountofthegenerationofnumbersmerelytoassistcontemplationof

  theirnature。

  Adifficulty,andareproachtoanyonewhofindsitno

  difficulty,arecontainedinthequestionhowtheelementsandthe

  principlesarerelatedtothegoodandthebeautiful;thedifficulty

  isthis,whetheranyoftheelementsissuchathingaswemeanbythe

  gooditselfandthebest,orthisisnotso,butthesearelaterin

  originthantheelements。Thetheologiansseemtoagreewithsome

  thinkersofthepresentday,whoanswerthequestioninthe

  negative,andsaythatboththegoodandthebeautifulappearinthe

  natureofthingsonlywhenthatnaturehasmadesomeprogress。This

  theydotoavoidarealobjectionwhichconfrontsthosewhosay,as

  somedo,thattheoneisafirstprinciple。Theobjectionarisesnot

  fromtheirascribinggoodnesstothefirstprincipleasan

点击下载App,搜索"METAPHYSICS",免费读到尾